This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpsub.0 | |- B = ( Base ` G ) |
|
| ogrpsub.1 | |- .<_ = ( le ` G ) |
||
| ogrpinv.2 | |- I = ( invg ` G ) |
||
| ogrpinv.3 | |- .0. = ( 0g ` G ) |
||
| Assertion | ogrpinv0le | |- ( ( G e. oGrp /\ X e. B ) -> ( .0. .<_ X <-> ( I ` X ) .<_ .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpsub.0 | |- B = ( Base ` G ) |
|
| 2 | ogrpsub.1 | |- .<_ = ( le ` G ) |
|
| 3 | ogrpinv.2 | |- I = ( invg ` G ) |
|
| 4 | ogrpinv.3 | |- .0. = ( 0g ` G ) |
|
| 5 | isogrp | |- ( G e. oGrp <-> ( G e. Grp /\ G e. oMnd ) ) |
|
| 6 | 5 | simprbi | |- ( G e. oGrp -> G e. oMnd ) |
| 7 | 6 | ad2antrr | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> G e. oMnd ) |
| 8 | omndmnd | |- ( G e. oMnd -> G e. Mnd ) |
|
| 9 | 1 4 | mndidcl | |- ( G e. Mnd -> .0. e. B ) |
| 10 | 7 8 9 | 3syl | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> .0. e. B ) |
| 11 | simplr | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> X e. B ) |
|
| 12 | ogrpgrp | |- ( G e. oGrp -> G e. Grp ) |
|
| 13 | 12 | ad2antrr | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> G e. Grp ) |
| 14 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( I ` X ) e. B ) |
| 15 | 13 11 14 | syl2anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> ( I ` X ) e. B ) |
| 16 | simpr | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> .0. .<_ X ) |
|
| 17 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 18 | 1 2 17 | omndadd | |- ( ( G e. oMnd /\ ( .0. e. B /\ X e. B /\ ( I ` X ) e. B ) /\ .0. .<_ X ) -> ( .0. ( +g ` G ) ( I ` X ) ) .<_ ( X ( +g ` G ) ( I ` X ) ) ) |
| 19 | 7 10 11 15 16 18 | syl131anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> ( .0. ( +g ` G ) ( I ` X ) ) .<_ ( X ( +g ` G ) ( I ` X ) ) ) |
| 20 | 1 17 4 | grplid | |- ( ( G e. Grp /\ ( I ` X ) e. B ) -> ( .0. ( +g ` G ) ( I ` X ) ) = ( I ` X ) ) |
| 21 | 13 15 20 | syl2anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> ( .0. ( +g ` G ) ( I ` X ) ) = ( I ` X ) ) |
| 22 | 1 17 4 3 | grprinv | |- ( ( G e. Grp /\ X e. B ) -> ( X ( +g ` G ) ( I ` X ) ) = .0. ) |
| 23 | 13 11 22 | syl2anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> ( X ( +g ` G ) ( I ` X ) ) = .0. ) |
| 24 | 19 21 23 | 3brtr3d | |- ( ( ( G e. oGrp /\ X e. B ) /\ .0. .<_ X ) -> ( I ` X ) .<_ .0. ) |
| 25 | 6 | ad2antrr | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> G e. oMnd ) |
| 26 | 12 | ad2antrr | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> G e. Grp ) |
| 27 | simplr | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> X e. B ) |
|
| 28 | 26 27 14 | syl2anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> ( I ` X ) e. B ) |
| 29 | 25 8 9 | 3syl | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> .0. e. B ) |
| 30 | simpr | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> ( I ` X ) .<_ .0. ) |
|
| 31 | 1 2 17 | omndadd | |- ( ( G e. oMnd /\ ( ( I ` X ) e. B /\ .0. e. B /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> ( ( I ` X ) ( +g ` G ) X ) .<_ ( .0. ( +g ` G ) X ) ) |
| 32 | 25 28 29 27 30 31 | syl131anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> ( ( I ` X ) ( +g ` G ) X ) .<_ ( .0. ( +g ` G ) X ) ) |
| 33 | 1 17 4 3 | grplinv | |- ( ( G e. Grp /\ X e. B ) -> ( ( I ` X ) ( +g ` G ) X ) = .0. ) |
| 34 | 26 27 33 | syl2anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> ( ( I ` X ) ( +g ` G ) X ) = .0. ) |
| 35 | 1 17 4 | grplid | |- ( ( G e. Grp /\ X e. B ) -> ( .0. ( +g ` G ) X ) = X ) |
| 36 | 26 27 35 | syl2anc | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> ( .0. ( +g ` G ) X ) = X ) |
| 37 | 32 34 36 | 3brtr3d | |- ( ( ( G e. oGrp /\ X e. B ) /\ ( I ` X ) .<_ .0. ) -> .0. .<_ X ) |
| 38 | 24 37 | impbida | |- ( ( G e. oGrp /\ X e. B ) -> ( .0. .<_ X <-> ( I ` X ) .<_ .0. ) ) |