This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpaddlt.0 | |- B = ( Base ` G ) |
|
| ogrpaddlt.1 | |- .< = ( lt ` G ) |
||
| ogrpaddlt.2 | |- .+ = ( +g ` G ) |
||
| Assertion | ogrpaddlt | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .< Y ) -> ( X .+ Z ) .< ( Y .+ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpaddlt.0 | |- B = ( Base ` G ) |
|
| 2 | ogrpaddlt.1 | |- .< = ( lt ` G ) |
|
| 3 | ogrpaddlt.2 | |- .+ = ( +g ` G ) |
|
| 4 | isogrp | |- ( G e. oGrp <-> ( G e. Grp /\ G e. oMnd ) ) |
|
| 5 | 4 | simprbi | |- ( G e. oGrp -> G e. oMnd ) |
| 6 | 5 | 3ad2ant1 | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .< Y ) -> G e. oMnd ) |
| 7 | simp2 | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .< Y ) -> ( X e. B /\ Y e. B /\ Z e. B ) ) |
|
| 8 | simp1 | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .< Y ) -> G e. oGrp ) |
|
| 9 | simp21 | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .< Y ) -> X e. B ) |
|
| 10 | simp22 | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .< Y ) -> Y e. B ) |
|
| 11 | simp3 | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .< Y ) -> X .< Y ) |
|
| 12 | eqid | |- ( le ` G ) = ( le ` G ) |
|
| 13 | 12 2 | pltle | |- ( ( G e. oGrp /\ X e. B /\ Y e. B ) -> ( X .< Y -> X ( le ` G ) Y ) ) |
| 14 | 13 | imp | |- ( ( ( G e. oGrp /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X ( le ` G ) Y ) |
| 15 | 8 9 10 11 14 | syl31anc | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .< Y ) -> X ( le ` G ) Y ) |
| 16 | 1 12 3 | omndadd | |- ( ( G e. oMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X ( le ` G ) Y ) -> ( X .+ Z ) ( le ` G ) ( Y .+ Z ) ) |
| 17 | 6 7 15 16 | syl3anc | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .< Y ) -> ( X .+ Z ) ( le ` G ) ( Y .+ Z ) ) |
| 18 | 2 | pltne | |- ( ( G e. oGrp /\ X e. B /\ Y e. B ) -> ( X .< Y -> X =/= Y ) ) |
| 19 | 18 | imp | |- ( ( ( G e. oGrp /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X =/= Y ) |
| 20 | 8 9 10 11 19 | syl31anc | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .< Y ) -> X =/= Y ) |
| 21 | ogrpgrp | |- ( G e. oGrp -> G e. Grp ) |
|
| 22 | 1 3 | grprcan | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Z ) = ( Y .+ Z ) <-> X = Y ) ) |
| 23 | 22 | biimpd | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Z ) = ( Y .+ Z ) -> X = Y ) ) |
| 24 | 21 23 | sylan | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Z ) = ( Y .+ Z ) -> X = Y ) ) |
| 25 | 24 | necon3d | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X =/= Y -> ( X .+ Z ) =/= ( Y .+ Z ) ) ) |
| 26 | 25 | 3impia | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X =/= Y ) -> ( X .+ Z ) =/= ( Y .+ Z ) ) |
| 27 | 8 7 20 26 | syl3anc | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .< Y ) -> ( X .+ Z ) =/= ( Y .+ Z ) ) |
| 28 | ovex | |- ( X .+ Z ) e. _V |
|
| 29 | ovex | |- ( Y .+ Z ) e. _V |
|
| 30 | 12 2 | pltval | |- ( ( G e. oGrp /\ ( X .+ Z ) e. _V /\ ( Y .+ Z ) e. _V ) -> ( ( X .+ Z ) .< ( Y .+ Z ) <-> ( ( X .+ Z ) ( le ` G ) ( Y .+ Z ) /\ ( X .+ Z ) =/= ( Y .+ Z ) ) ) ) |
| 31 | 28 29 30 | mp3an23 | |- ( G e. oGrp -> ( ( X .+ Z ) .< ( Y .+ Z ) <-> ( ( X .+ Z ) ( le ` G ) ( Y .+ Z ) /\ ( X .+ Z ) =/= ( Y .+ Z ) ) ) ) |
| 32 | 31 | 3ad2ant1 | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .< Y ) -> ( ( X .+ Z ) .< ( Y .+ Z ) <-> ( ( X .+ Z ) ( le ` G ) ( Y .+ Z ) /\ ( X .+ Z ) =/= ( Y .+ Z ) ) ) ) |
| 33 | 17 27 32 | mpbir2and | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .< Y ) -> ( X .+ Z ) .< ( Y .+ Z ) ) |