This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015) (Proof shortened by Mario Carneiro, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resmpt3 | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐵 ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resres | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) ↾ 𝐵 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ 𝐵 ) ) | |
| 2 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 3 | resmpt | ⊢ ( 𝐴 ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 5 | 4 | reseq1i | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐴 ) ↾ 𝐵 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐵 ) |
| 6 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 7 | resmpt | ⊢ ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) |
| 9 | 1 5 8 | 3eqtr3i | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↾ 𝐵 ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) |