This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution law for the function operation and the composition of functions. (Contributed by Stefan O'Rear, 17-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofco2 | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ 𝐻 ) = ( ( 𝐹 ∘ 𝐻 ) ∘f 𝑅 ( 𝐺 ∘ 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → Fun 𝐻 ) | |
| 2 | fvimacnvi | ⊢ ( ( Fun 𝐻 ∧ 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝐻 ‘ 𝑥 ) ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) |
| 4 | 1 | funfnd | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → 𝐻 Fn dom 𝐻 ) |
| 5 | dffn5 | ⊢ ( 𝐻 Fn dom 𝐻 ↔ 𝐻 = ( 𝑥 ∈ dom 𝐻 ↦ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 6 | 4 5 | sylib | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → 𝐻 = ( 𝑥 ∈ dom 𝐻 ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
| 7 | 6 | reseq1d | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( ( 𝑥 ∈ dom 𝐻 ↦ ( 𝐻 ‘ 𝑥 ) ) ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) ) |
| 8 | cnvimass | ⊢ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ⊆ dom 𝐻 | |
| 9 | resmpt | ⊢ ( ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ⊆ dom 𝐻 → ( ( 𝑥 ∈ dom 𝐻 ↦ ( 𝐻 ‘ 𝑥 ) ) ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ↦ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( ( 𝑥 ∈ dom 𝐻 ↦ ( 𝐻 ‘ 𝑥 ) ) ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ↦ ( 𝐻 ‘ 𝑥 ) ) |
| 11 | 7 10 | eqtrdi | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
| 12 | offval3 | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑦 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) ) ) ) | |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑦 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 14 | fveq2 | ⊢ ( 𝑦 = ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 15 | fveq2 | ⊢ ( 𝑦 = ( 𝐻 ‘ 𝑥 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 16 | 14 15 | oveq12d | ⊢ ( 𝑦 = ( 𝐻 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 17 | 3 11 13 16 | fmptco | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) ) = ( 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ↦ ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 18 | ovex | ⊢ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ∈ V | |
| 19 | 18 | rgenw | ⊢ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ∈ V |
| 20 | eqid | ⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) | |
| 21 | 20 | fnmpt | ⊢ ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ∈ V → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) Fn ( dom 𝐹 ∩ dom 𝐺 ) ) |
| 22 | 19 21 | mp1i | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) Fn ( dom 𝐹 ∩ dom 𝐺 ) ) |
| 23 | offval3 | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 24 | 23 | adantr | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 25 | 24 | fneq1d | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) Fn ( dom 𝐹 ∩ dom 𝐺 ) ↔ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) Fn ( dom 𝐹 ∩ dom 𝐺 ) ) ) |
| 26 | 22 25 | mpbird | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) Fn ( dom 𝐹 ∩ dom 𝐺 ) ) |
| 27 | 26 | fndmd | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → dom ( 𝐹 ∘f 𝑅 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) ) |
| 28 | eqimss | ⊢ ( dom ( 𝐹 ∘f 𝑅 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) → dom ( 𝐹 ∘f 𝑅 𝐺 ) ⊆ ( dom 𝐹 ∩ dom 𝐺 ) ) | |
| 29 | cores2 | ⊢ ( dom ( 𝐹 ∘f 𝑅 𝐺 ) ⊆ ( dom 𝐹 ∩ dom 𝐺 ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ◡ ( ◡ 𝐻 ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ 𝐻 ) ) | |
| 30 | 27 28 29 | 3syl | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ◡ ( ◡ 𝐻 ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ 𝐻 ) ) |
| 31 | funcnvres2 | ⊢ ( Fun 𝐻 → ◡ ( ◡ 𝐻 ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) ) | |
| 32 | 1 31 | syl | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ◡ ( ◡ 𝐻 ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) ) |
| 33 | 32 | coeq2d | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ◡ ( ◡ 𝐻 ↾ ( dom 𝐹 ∩ dom 𝐺 ) ) ) = ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) ) ) |
| 34 | 30 33 | eqtr3d | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ 𝐻 ) = ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ ( 𝐻 ↾ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) ) ) |
| 35 | simpr2 | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐹 ∘ 𝐻 ) ∈ V ) | |
| 36 | simpr3 | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝐺 ∘ 𝐻 ) ∈ V ) | |
| 37 | offval3 | ⊢ ( ( ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) → ( ( 𝐹 ∘ 𝐻 ) ∘f 𝑅 ( 𝐺 ∘ 𝐻 ) ) = ( 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ↦ ( ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) ) ) ) | |
| 38 | 35 36 37 | syl2anc | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘ 𝐻 ) ∘f 𝑅 ( 𝐺 ∘ 𝐻 ) ) = ( 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ↦ ( ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) ) ) ) |
| 39 | dmco | ⊢ dom ( 𝐹 ∘ 𝐻 ) = ( ◡ 𝐻 “ dom 𝐹 ) | |
| 40 | dmco | ⊢ dom ( 𝐺 ∘ 𝐻 ) = ( ◡ 𝐻 “ dom 𝐺 ) | |
| 41 | 39 40 | ineq12i | ⊢ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) = ( ( ◡ 𝐻 “ dom 𝐹 ) ∩ ( ◡ 𝐻 “ dom 𝐺 ) ) |
| 42 | inpreima | ⊢ ( Fun 𝐻 → ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( ( ◡ 𝐻 “ dom 𝐹 ) ∩ ( ◡ 𝐻 “ dom 𝐺 ) ) ) | |
| 43 | 1 42 | syl | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) = ( ( ◡ 𝐻 “ dom 𝐹 ) ∩ ( ◡ 𝐻 “ dom 𝐺 ) ) ) |
| 44 | 41 43 | eqtr4id | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) = ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ) |
| 45 | simplr1 | ⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ) → Fun 𝐻 ) | |
| 46 | inss2 | ⊢ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ⊆ dom ( 𝐺 ∘ 𝐻 ) | |
| 47 | dmcoss | ⊢ dom ( 𝐺 ∘ 𝐻 ) ⊆ dom 𝐻 | |
| 48 | 46 47 | sstri | ⊢ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ⊆ dom 𝐻 |
| 49 | 48 | a1i | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ⊆ dom 𝐻 ) |
| 50 | 49 | sselda | ⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ) → 𝑥 ∈ dom 𝐻 ) |
| 51 | fvco | ⊢ ( ( Fun 𝐻 ∧ 𝑥 ∈ dom 𝐻 ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 52 | 45 50 51 | syl2anc | ⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 53 | inss1 | ⊢ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ⊆ dom ( 𝐹 ∘ 𝐻 ) | |
| 54 | dmcoss | ⊢ dom ( 𝐹 ∘ 𝐻 ) ⊆ dom 𝐻 | |
| 55 | 53 54 | sstri | ⊢ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ⊆ dom 𝐻 |
| 56 | 55 | a1i | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ⊆ dom 𝐻 ) |
| 57 | 56 | sselda | ⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ) → 𝑥 ∈ dom 𝐻 ) |
| 58 | fvco | ⊢ ( ( Fun 𝐻 ∧ 𝑥 ∈ dom 𝐻 ) → ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 59 | 45 57 58 | syl2anc | ⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ) → ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 60 | 52 59 | oveq12d | ⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) ∧ 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ) → ( ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 61 | 44 60 | mpteq12dva | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( 𝑥 ∈ ( dom ( 𝐹 ∘ 𝐻 ) ∩ dom ( 𝐺 ∘ 𝐻 ) ) ↦ ( ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) 𝑅 ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ↦ ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 62 | 38 61 | eqtrd | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘ 𝐻 ) ∘f 𝑅 ( 𝐺 ∘ 𝐻 ) ) = ( 𝑥 ∈ ( ◡ 𝐻 “ ( dom 𝐹 ∩ dom 𝐺 ) ) ↦ ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 63 | 17 34 62 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 ∘ 𝐻 ) ∈ V ∧ ( 𝐺 ∘ 𝐻 ) ∈ V ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ 𝐻 ) = ( ( 𝐹 ∘ 𝐻 ) ∘f 𝑅 ( 𝐺 ∘ 𝐻 ) ) ) |