This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cores2 | ⊢ ( dom 𝐴 ⊆ 𝐶 → ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ( 𝐴 ∘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 | ⊢ dom 𝐴 = ran ◡ 𝐴 | |
| 2 | 1 | sseq1i | ⊢ ( dom 𝐴 ⊆ 𝐶 ↔ ran ◡ 𝐴 ⊆ 𝐶 ) |
| 3 | cores | ⊢ ( ran ◡ 𝐴 ⊆ 𝐶 → ( ( ◡ 𝐵 ↾ 𝐶 ) ∘ ◡ 𝐴 ) = ( ◡ 𝐵 ∘ ◡ 𝐴 ) ) | |
| 4 | 2 3 | sylbi | ⊢ ( dom 𝐴 ⊆ 𝐶 → ( ( ◡ 𝐵 ↾ 𝐶 ) ∘ ◡ 𝐴 ) = ( ◡ 𝐵 ∘ ◡ 𝐴 ) ) |
| 5 | cnvco | ⊢ ◡ ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ( ◡ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ∘ ◡ 𝐴 ) | |
| 6 | cocnvcnv1 | ⊢ ( ◡ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ∘ ◡ 𝐴 ) = ( ( ◡ 𝐵 ↾ 𝐶 ) ∘ ◡ 𝐴 ) | |
| 7 | 5 6 | eqtri | ⊢ ◡ ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ( ( ◡ 𝐵 ↾ 𝐶 ) ∘ ◡ 𝐴 ) |
| 8 | cnvco | ⊢ ◡ ( 𝐴 ∘ 𝐵 ) = ( ◡ 𝐵 ∘ ◡ 𝐴 ) | |
| 9 | 4 7 8 | 3eqtr4g | ⊢ ( dom 𝐴 ⊆ 𝐶 → ◡ ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ◡ ( 𝐴 ∘ 𝐵 ) ) |
| 10 | 9 | cnveqd | ⊢ ( dom 𝐴 ⊆ 𝐶 → ◡ ◡ ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ◡ ◡ ( 𝐴 ∘ 𝐵 ) ) |
| 11 | relco | ⊢ Rel ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) | |
| 12 | dfrel2 | ⊢ ( Rel ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) ↔ ◡ ◡ ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) ) | |
| 13 | 11 12 | mpbi | ⊢ ◡ ◡ ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) |
| 14 | relco | ⊢ Rel ( 𝐴 ∘ 𝐵 ) | |
| 15 | dfrel2 | ⊢ ( Rel ( 𝐴 ∘ 𝐵 ) ↔ ◡ ◡ ( 𝐴 ∘ 𝐵 ) = ( 𝐴 ∘ 𝐵 ) ) | |
| 16 | 14 15 | mpbi | ⊢ ◡ ◡ ( 𝐴 ∘ 𝐵 ) = ( 𝐴 ∘ 𝐵 ) |
| 17 | 10 13 16 | 3eqtr3g | ⊢ ( dom 𝐴 ⊆ 𝐶 → ( 𝐴 ∘ ◡ ( ◡ 𝐵 ↾ 𝐶 ) ) = ( 𝐴 ∘ 𝐵 ) ) |