This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate value of ordinal exponentiation. Compare oev . (Contributed by NM, 2-Jan-2004) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oev2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o ∅ ) ) | |
| 2 | oe0m0 | ⊢ ( ∅ ↑o ∅ ) = 1o | |
| 3 | 1 2 | eqtrdi | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = 1o ) |
| 4 | fveq2 | ⊢ ( 𝐵 = ∅ → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ ∅ ) ) | |
| 5 | 1oex | ⊢ 1o ∈ V | |
| 6 | 5 | rdg0 | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ ∅ ) = 1o |
| 7 | 4 6 | eqtrdi | ⊢ ( 𝐵 = ∅ → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = 1o ) |
| 8 | inteq | ⊢ ( 𝐵 = ∅ → ∩ 𝐵 = ∩ ∅ ) | |
| 9 | int0 | ⊢ ∩ ∅ = V | |
| 10 | 8 9 | eqtrdi | ⊢ ( 𝐵 = ∅ → ∩ 𝐵 = V ) |
| 11 | 7 10 | ineq12d | ⊢ ( 𝐵 = ∅ → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) = ( 1o ∩ V ) ) |
| 12 | inv1 | ⊢ ( 1o ∩ V ) = 1o | |
| 13 | 12 | a1i | ⊢ ( 𝐴 = ∅ → ( 1o ∩ V ) = 1o ) |
| 14 | 11 13 | sylan9eqr | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) = 1o ) |
| 15 | 3 14 | eqtr4d | ⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) ) |
| 16 | oveq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ↑o 𝐵 ) = ( ∅ ↑o 𝐵 ) ) | |
| 17 | oe0m1 | ⊢ ( 𝐵 ∈ On → ( ∅ ∈ 𝐵 ↔ ( ∅ ↑o 𝐵 ) = ∅ ) ) | |
| 18 | 17 | biimpa | ⊢ ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) → ( ∅ ↑o 𝐵 ) = ∅ ) |
| 19 | 16 18 | sylan9eqr | ⊢ ( ( ( 𝐵 ∈ On ∧ ∅ ∈ 𝐵 ) ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ∅ ) |
| 20 | 19 | an32s | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) ∧ ∅ ∈ 𝐵 ) → ( 𝐴 ↑o 𝐵 ) = ∅ ) |
| 21 | int0el | ⊢ ( ∅ ∈ 𝐵 → ∩ 𝐵 = ∅ ) | |
| 22 | 21 | ineq2d | ⊢ ( ∅ ∈ 𝐵 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∅ ) ) |
| 23 | in0 | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∅ ) = ∅ | |
| 24 | 22 23 | eqtrdi | ⊢ ( ∅ ∈ 𝐵 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) = ∅ ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) ∧ ∅ ∈ 𝐵 ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) = ∅ ) |
| 26 | 20 25 | eqtr4d | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) ∧ ∅ ∈ 𝐵 ) → ( 𝐴 ↑o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) ) |
| 27 | 15 26 | oe0lem | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) ) |
| 28 | inteq | ⊢ ( 𝐴 = ∅ → ∩ 𝐴 = ∩ ∅ ) | |
| 29 | 28 9 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∩ 𝐴 = V ) |
| 30 | 29 | difeq2d | ⊢ ( 𝐴 = ∅ → ( V ∖ ∩ 𝐴 ) = ( V ∖ V ) ) |
| 31 | difid | ⊢ ( V ∖ V ) = ∅ | |
| 32 | 30 31 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( V ∖ ∩ 𝐴 ) = ∅ ) |
| 33 | 32 | uneq2d | ⊢ ( 𝐴 = ∅ → ( ∩ 𝐵 ∪ ( V ∖ ∩ 𝐴 ) ) = ( ∩ 𝐵 ∪ ∅ ) ) |
| 34 | uncom | ⊢ ( ∩ 𝐵 ∪ ( V ∖ ∩ 𝐴 ) ) = ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) | |
| 35 | un0 | ⊢ ( ∩ 𝐵 ∪ ∅ ) = ∩ 𝐵 | |
| 36 | 33 34 35 | 3eqtr3g | ⊢ ( 𝐴 = ∅ → ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) = ∩ 𝐵 ) |
| 37 | 36 | adantl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) = ∩ 𝐵 ) |
| 38 | 37 | ineq2d | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ∩ 𝐵 ) ) |
| 39 | 27 38 | eqtr4d | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 = ∅ ) → ( 𝐴 ↑o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) ) ) |
| 40 | oevn0 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) | |
| 41 | int0el | ⊢ ( ∅ ∈ 𝐴 → ∩ 𝐴 = ∅ ) | |
| 42 | 41 | difeq2d | ⊢ ( ∅ ∈ 𝐴 → ( V ∖ ∩ 𝐴 ) = ( V ∖ ∅ ) ) |
| 43 | dif0 | ⊢ ( V ∖ ∅ ) = V | |
| 44 | 42 43 | eqtrdi | ⊢ ( ∅ ∈ 𝐴 → ( V ∖ ∩ 𝐴 ) = V ) |
| 45 | 44 | uneq2d | ⊢ ( ∅ ∈ 𝐴 → ( ∩ 𝐵 ∪ ( V ∖ ∩ 𝐴 ) ) = ( ∩ 𝐵 ∪ V ) ) |
| 46 | unv | ⊢ ( ∩ 𝐵 ∪ V ) = V | |
| 47 | 45 34 46 | 3eqtr3g | ⊢ ( ∅ ∈ 𝐴 → ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) = V ) |
| 48 | 47 | adantl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) = V ) |
| 49 | 48 | ineq2d | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ V ) ) |
| 50 | inv1 | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ V ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) | |
| 51 | 49 50 | eqtr2di | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) ) ) |
| 52 | 40 51 | eqtrd | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) ) ) |
| 53 | 39 52 | oe0lem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∩ ( ( V ∖ ∩ 𝐴 ) ∪ ∩ 𝐵 ) ) ) |