This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate value of ordinal exponentiation. Compare oev . (Contributed by NM, 2-Jan-2004) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oev2 | |- ( ( A e. On /\ B e. On ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 | |- ( ( A = (/) /\ B = (/) ) -> ( A ^o B ) = ( (/) ^o (/) ) ) |
|
| 2 | oe0m0 | |- ( (/) ^o (/) ) = 1o |
|
| 3 | 1 2 | eqtrdi | |- ( ( A = (/) /\ B = (/) ) -> ( A ^o B ) = 1o ) |
| 4 | fveq2 | |- ( B = (/) -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` (/) ) ) |
|
| 5 | 1oex | |- 1o e. _V |
|
| 6 | 5 | rdg0 | |- ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` (/) ) = 1o |
| 7 | 4 6 | eqtrdi | |- ( B = (/) -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) = 1o ) |
| 8 | inteq | |- ( B = (/) -> |^| B = |^| (/) ) |
|
| 9 | int0 | |- |^| (/) = _V |
|
| 10 | 8 9 | eqtrdi | |- ( B = (/) -> |^| B = _V ) |
| 11 | 7 10 | ineq12d | |- ( B = (/) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = ( 1o i^i _V ) ) |
| 12 | inv1 | |- ( 1o i^i _V ) = 1o |
|
| 13 | 12 | a1i | |- ( A = (/) -> ( 1o i^i _V ) = 1o ) |
| 14 | 11 13 | sylan9eqr | |- ( ( A = (/) /\ B = (/) ) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = 1o ) |
| 15 | 3 14 | eqtr4d | |- ( ( A = (/) /\ B = (/) ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) ) |
| 16 | oveq1 | |- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
|
| 17 | oe0m1 | |- ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
|
| 18 | 17 | biimpa | |- ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) |
| 19 | 16 18 | sylan9eqr | |- ( ( ( B e. On /\ (/) e. B ) /\ A = (/) ) -> ( A ^o B ) = (/) ) |
| 20 | 19 | an32s | |- ( ( ( B e. On /\ A = (/) ) /\ (/) e. B ) -> ( A ^o B ) = (/) ) |
| 21 | int0el | |- ( (/) e. B -> |^| B = (/) ) |
|
| 22 | 21 | ineq2d | |- ( (/) e. B -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i (/) ) ) |
| 23 | in0 | |- ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i (/) ) = (/) |
|
| 24 | 22 23 | eqtrdi | |- ( (/) e. B -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = (/) ) |
| 25 | 24 | adantl | |- ( ( ( B e. On /\ A = (/) ) /\ (/) e. B ) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = (/) ) |
| 26 | 20 25 | eqtr4d | |- ( ( ( B e. On /\ A = (/) ) /\ (/) e. B ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) ) |
| 27 | 15 26 | oe0lem | |- ( ( B e. On /\ A = (/) ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) ) |
| 28 | inteq | |- ( A = (/) -> |^| A = |^| (/) ) |
|
| 29 | 28 9 | eqtrdi | |- ( A = (/) -> |^| A = _V ) |
| 30 | 29 | difeq2d | |- ( A = (/) -> ( _V \ |^| A ) = ( _V \ _V ) ) |
| 31 | difid | |- ( _V \ _V ) = (/) |
|
| 32 | 30 31 | eqtrdi | |- ( A = (/) -> ( _V \ |^| A ) = (/) ) |
| 33 | 32 | uneq2d | |- ( A = (/) -> ( |^| B u. ( _V \ |^| A ) ) = ( |^| B u. (/) ) ) |
| 34 | uncom | |- ( |^| B u. ( _V \ |^| A ) ) = ( ( _V \ |^| A ) u. |^| B ) |
|
| 35 | un0 | |- ( |^| B u. (/) ) = |^| B |
|
| 36 | 33 34 35 | 3eqtr3g | |- ( A = (/) -> ( ( _V \ |^| A ) u. |^| B ) = |^| B ) |
| 37 | 36 | adantl | |- ( ( B e. On /\ A = (/) ) -> ( ( _V \ |^| A ) u. |^| B ) = |^| B ) |
| 38 | 37 | ineq2d | |- ( ( B e. On /\ A = (/) ) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) ) |
| 39 | 27 38 | eqtr4d | |- ( ( B e. On /\ A = (/) ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) ) |
| 40 | oevn0 | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |
|
| 41 | int0el | |- ( (/) e. A -> |^| A = (/) ) |
|
| 42 | 41 | difeq2d | |- ( (/) e. A -> ( _V \ |^| A ) = ( _V \ (/) ) ) |
| 43 | dif0 | |- ( _V \ (/) ) = _V |
|
| 44 | 42 43 | eqtrdi | |- ( (/) e. A -> ( _V \ |^| A ) = _V ) |
| 45 | 44 | uneq2d | |- ( (/) e. A -> ( |^| B u. ( _V \ |^| A ) ) = ( |^| B u. _V ) ) |
| 46 | unv | |- ( |^| B u. _V ) = _V |
|
| 47 | 45 34 46 | 3eqtr3g | |- ( (/) e. A -> ( ( _V \ |^| A ) u. |^| B ) = _V ) |
| 48 | 47 | adantl | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( ( _V \ |^| A ) u. |^| B ) = _V ) |
| 49 | 48 | ineq2d | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i _V ) ) |
| 50 | inv1 | |- ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i _V ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) |
|
| 51 | 49 50 | eqtr2di | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) ) |
| 52 | 40 51 | eqtrd | |- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) ) |
| 53 | 39 52 | oe0lem | |- ( ( A e. On /\ B e. On ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) ) |