This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of ordinal exponentiation. (Contributed by NM, 30-Dec-2004) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oev | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) = if ( 𝐴 = ∅ , ( 1o ∖ 𝐵 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 = ∅ ↔ 𝐴 = ∅ ) ) | |
| 2 | oveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ·o 𝑦 ) = ( 𝑥 ·o 𝐴 ) ) | |
| 3 | 2 | mpteq2dv | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) = ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) ) |
| 4 | rdgeq1 | ⊢ ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) = ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) → rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) , 1o ) = rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑦 = 𝐴 → rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) , 1o ) = rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ) |
| 6 | 5 | fveq1d | ⊢ ( 𝑦 = 𝐴 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) , 1o ) ‘ 𝑧 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝑧 ) ) |
| 7 | 1 6 | ifbieq2d | ⊢ ( 𝑦 = 𝐴 → if ( 𝑦 = ∅ , ( 1o ∖ 𝑧 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) , 1o ) ‘ 𝑧 ) ) = if ( 𝐴 = ∅ , ( 1o ∖ 𝑧 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝑧 ) ) ) |
| 8 | difeq2 | ⊢ ( 𝑧 = 𝐵 → ( 1o ∖ 𝑧 ) = ( 1o ∖ 𝐵 ) ) | |
| 9 | fveq2 | ⊢ ( 𝑧 = 𝐵 → ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝑧 ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) | |
| 10 | 8 9 | ifeq12d | ⊢ ( 𝑧 = 𝐵 → if ( 𝐴 = ∅ , ( 1o ∖ 𝑧 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝑧 ) ) = if ( 𝐴 = ∅ , ( 1o ∖ 𝐵 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ) |
| 11 | df-oexp | ⊢ ↑o = ( 𝑦 ∈ On , 𝑧 ∈ On ↦ if ( 𝑦 = ∅ , ( 1o ∖ 𝑧 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝑦 ) ) , 1o ) ‘ 𝑧 ) ) ) | |
| 12 | 1oex | ⊢ 1o ∈ V | |
| 13 | 12 | difexi | ⊢ ( 1o ∖ 𝐵 ) ∈ V |
| 14 | fvex | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ∈ V | |
| 15 | 13 14 | ifex | ⊢ if ( 𝐴 = ∅ , ( 1o ∖ 𝐵 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ∈ V |
| 16 | 7 10 11 15 | ovmpo | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) = if ( 𝐴 = ∅ , ( 1o ∖ 𝐵 ) , ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 ·o 𝐴 ) ) , 1o ) ‘ 𝐵 ) ) ) |