This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | odupos.d | |- D = ( ODual ` O ) |
|
| Assertion | oduposb | |- ( O e. V -> ( O e. Poset <-> D e. Poset ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odupos.d | |- D = ( ODual ` O ) |
|
| 2 | 1 | odupos | |- ( O e. Poset -> D e. Poset ) |
| 3 | eqid | |- ( ODual ` D ) = ( ODual ` D ) |
|
| 4 | 3 | odupos | |- ( D e. Poset -> ( ODual ` D ) e. Poset ) |
| 5 | fvexd | |- ( O e. V -> ( ODual ` D ) e. _V ) |
|
| 6 | id | |- ( O e. V -> O e. V ) |
|
| 7 | eqid | |- ( Base ` O ) = ( Base ` O ) |
|
| 8 | 1 7 | odubas | |- ( Base ` O ) = ( Base ` D ) |
| 9 | 3 8 | odubas | |- ( Base ` O ) = ( Base ` ( ODual ` D ) ) |
| 10 | 9 | a1i | |- ( O e. V -> ( Base ` O ) = ( Base ` ( ODual ` D ) ) ) |
| 11 | eqidd | |- ( O e. V -> ( Base ` O ) = ( Base ` O ) ) |
|
| 12 | eqid | |- ( le ` O ) = ( le ` O ) |
|
| 13 | 1 12 | oduleval | |- `' ( le ` O ) = ( le ` D ) |
| 14 | 3 13 | oduleval | |- `' `' ( le ` O ) = ( le ` ( ODual ` D ) ) |
| 15 | 14 | eqcomi | |- ( le ` ( ODual ` D ) ) = `' `' ( le ` O ) |
| 16 | 15 | breqi | |- ( a ( le ` ( ODual ` D ) ) b <-> a `' `' ( le ` O ) b ) |
| 17 | vex | |- a e. _V |
|
| 18 | vex | |- b e. _V |
|
| 19 | 17 18 | brcnv | |- ( a `' `' ( le ` O ) b <-> b `' ( le ` O ) a ) |
| 20 | 18 17 | brcnv | |- ( b `' ( le ` O ) a <-> a ( le ` O ) b ) |
| 21 | 16 19 20 | 3bitri | |- ( a ( le ` ( ODual ` D ) ) b <-> a ( le ` O ) b ) |
| 22 | 21 | a1i | |- ( ( O e. V /\ ( a e. ( Base ` O ) /\ b e. ( Base ` O ) ) ) -> ( a ( le ` ( ODual ` D ) ) b <-> a ( le ` O ) b ) ) |
| 23 | 5 6 10 11 22 | pospropd | |- ( O e. V -> ( ( ODual ` D ) e. Poset <-> O e. Poset ) ) |
| 24 | 4 23 | imbitrid | |- ( O e. V -> ( D e. Poset -> O e. Poset ) ) |
| 25 | 2 24 | impbid2 | |- ( O e. V -> ( O e. Poset <-> D e. Poset ) ) |