This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order of a multiple divides the order of the base point. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odmulgid.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odmulgid.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odmulgid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | odmulg2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odmulgid.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odmulgid.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odmulgid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | 1 2 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 5 | 4 | nn0zd | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
| 7 | simp3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 8 | dvdsmul1 | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ 𝐴 ) · 𝑁 ) ) | |
| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ 𝐴 ) · 𝑁 ) ) |
| 10 | 1 2 3 | odmulgid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ 𝐴 ) · 𝑁 ) ) ) |
| 11 | 6 10 | mpdan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑂 ‘ 𝐴 ) ∥ ( ( 𝑂 ‘ 𝐴 ) · 𝑁 ) ) ) |
| 12 | 9 11 | mpbird | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) |