This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum commutes (extended domain version). (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcomx.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| lsmcomx.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| Assertion | lsmcomx | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcomx.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | lsmcomx.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝐺 ∈ Abel ) | |
| 4 | simpl2 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑇 ⊆ 𝐵 ) | |
| 5 | simprl | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑇 ) | |
| 6 | 4 5 | sseldd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑦 ∈ 𝐵 ) |
| 7 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑈 ⊆ 𝐵 ) | |
| 8 | simprr | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) | |
| 9 | 7 8 | sseldd | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑧 ∈ 𝐵 ) |
| 10 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 11 | 1 10 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 12 | 3 6 9 11 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 13 | 12 | eqeq2d | ⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ↔ 𝑥 = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 14 | 13 | 2rexbidva | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 15 | rexcom | ⊢ ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ↔ ∃ 𝑧 ∈ 𝑈 ∃ 𝑦 ∈ 𝑇 𝑥 = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) | |
| 16 | 14 15 | bitrdi | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ↔ ∃ 𝑧 ∈ 𝑈 ∃ 𝑦 ∈ 𝑇 𝑥 = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 17 | 1 10 2 | lsmelvalx | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 18 | 1 10 2 | lsmelvalx | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑈 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑥 ∈ ( 𝑈 ⊕ 𝑇 ) ↔ ∃ 𝑧 ∈ 𝑈 ∃ 𝑦 ∈ 𝑇 𝑥 = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 19 | 18 | 3com23 | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑥 ∈ ( 𝑈 ⊕ 𝑇 ) ↔ ∃ 𝑧 ∈ 𝑈 ∃ 𝑦 ∈ 𝑇 𝑥 = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 20 | 16 17 19 | 3bitr4d | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑥 ∈ ( 𝑈 ⊕ 𝑇 ) ) ) |
| 21 | 20 | eqrdv | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 ⊕ 𝑈 ) = ( 𝑈 ⊕ 𝑇 ) ) |