This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | occon3 | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ococss | ⊢ ( 𝐵 ⊆ ℋ → 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
| 3 | ocss | ⊢ ( 𝐵 ⊆ ℋ → ( ⊥ ‘ 𝐵 ) ⊆ ℋ ) | |
| 4 | occon | ⊢ ( ( 𝐴 ⊆ ℋ ∧ ( ⊥ ‘ 𝐵 ) ⊆ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 6 | sstr2 | ⊢ ( 𝐵 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ⊆ ( ⊥ ‘ 𝐴 ) → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) | |
| 7 | 2 5 6 | sylsyld | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) → 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 8 | ococss | ⊢ ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 10 | id | ⊢ ( 𝐵 ⊆ ℋ → 𝐵 ⊆ ℋ ) | |
| 11 | ocss | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) | |
| 12 | occon | ⊢ ( ( 𝐵 ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) | |
| 13 | 10 11 12 | syl2anr | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
| 14 | sstr2 | ⊢ ( 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ 𝐵 ) → 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) ) | |
| 15 | 9 13 14 | sylsyld | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) → 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ) ) |
| 16 | 7 15 | impbid | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ⊥ ‘ 𝐴 ) ) ) |