This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | occon3 | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ ( _|_ ` B ) <-> B C_ ( _|_ ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ococss | |- ( B C_ ~H -> B C_ ( _|_ ` ( _|_ ` B ) ) ) |
|
| 2 | 1 | adantl | |- ( ( A C_ ~H /\ B C_ ~H ) -> B C_ ( _|_ ` ( _|_ ` B ) ) ) |
| 3 | ocss | |- ( B C_ ~H -> ( _|_ ` B ) C_ ~H ) |
|
| 4 | occon | |- ( ( A C_ ~H /\ ( _|_ ` B ) C_ ~H ) -> ( A C_ ( _|_ ` B ) -> ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` A ) ) ) |
|
| 5 | 3 4 | sylan2 | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ ( _|_ ` B ) -> ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` A ) ) ) |
| 6 | sstr2 | |- ( B C_ ( _|_ ` ( _|_ ` B ) ) -> ( ( _|_ ` ( _|_ ` B ) ) C_ ( _|_ ` A ) -> B C_ ( _|_ ` A ) ) ) |
|
| 7 | 2 5 6 | sylsyld | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ ( _|_ ` B ) -> B C_ ( _|_ ` A ) ) ) |
| 8 | ococss | |- ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
|
| 9 | 8 | adantr | |- ( ( A C_ ~H /\ B C_ ~H ) -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 10 | id | |- ( B C_ ~H -> B C_ ~H ) |
|
| 11 | ocss | |- ( A C_ ~H -> ( _|_ ` A ) C_ ~H ) |
|
| 12 | occon | |- ( ( B C_ ~H /\ ( _|_ ` A ) C_ ~H ) -> ( B C_ ( _|_ ` A ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` B ) ) ) |
|
| 13 | 10 11 12 | syl2anr | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( B C_ ( _|_ ` A ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` B ) ) ) |
| 14 | sstr2 | |- ( A C_ ( _|_ ` ( _|_ ` A ) ) -> ( ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` B ) -> A C_ ( _|_ ` B ) ) ) |
|
| 15 | 9 13 14 | sylsyld | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( B C_ ( _|_ ` A ) -> A C_ ( _|_ ` B ) ) ) |
| 16 | 7 15 | impbid | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ ( _|_ ` B ) <-> B C_ ( _|_ ` A ) ) ) |