This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero vector in the complement of a subspace does not belong to the subspace. (Contributed by NM, 10-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ocnel | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ∧ 𝐴 ≠ 0ℎ ) → ¬ 𝐴 ∈ 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | ⊢ ( 𝐴 ∈ ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) ↔ ( 𝐴 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) ) | |
| 2 | ocin | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0ℋ ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐴 ∈ ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) ↔ 𝐴 ∈ 0ℋ ) ) |
| 4 | 3 | biimpd | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐴 ∈ ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) → 𝐴 ∈ 0ℋ ) ) |
| 5 | 1 4 | biimtrrid | ⊢ ( 𝐻 ∈ Sℋ → ( ( 𝐴 ∈ 𝐻 ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) → 𝐴 ∈ 0ℋ ) ) |
| 6 | 5 | expcomd | ⊢ ( 𝐻 ∈ Sℋ → ( 𝐴 ∈ ( ⊥ ‘ 𝐻 ) → ( 𝐴 ∈ 𝐻 → 𝐴 ∈ 0ℋ ) ) ) |
| 7 | 6 | imp | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 ∈ 𝐻 → 𝐴 ∈ 0ℋ ) ) |
| 8 | elch0 | ⊢ ( 𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ ) | |
| 9 | 7 8 | imbitrdi | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 ∈ 𝐻 → 𝐴 = 0ℎ ) ) |
| 10 | 9 | necon3ad | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ) → ( 𝐴 ≠ 0ℎ → ¬ 𝐴 ∈ 𝐻 ) ) |
| 11 | 10 | 3impia | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ ( ⊥ ‘ 𝐻 ) ∧ 𝐴 ≠ 0ℎ ) → ¬ 𝐴 ∈ 𝐻 ) |