This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal addition. Proposition 8.7 of TakeutiZaring p. 59. (Contributed by NM, 7-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oawordri | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B -> ( A +o C ) C_ ( B +o C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = (/) -> ( A +o x ) = ( A +o (/) ) ) |
|
| 2 | oveq2 | |- ( x = (/) -> ( B +o x ) = ( B +o (/) ) ) |
|
| 3 | 1 2 | sseq12d | |- ( x = (/) -> ( ( A +o x ) C_ ( B +o x ) <-> ( A +o (/) ) C_ ( B +o (/) ) ) ) |
| 4 | oveq2 | |- ( x = y -> ( A +o x ) = ( A +o y ) ) |
|
| 5 | oveq2 | |- ( x = y -> ( B +o x ) = ( B +o y ) ) |
|
| 6 | 4 5 | sseq12d | |- ( x = y -> ( ( A +o x ) C_ ( B +o x ) <-> ( A +o y ) C_ ( B +o y ) ) ) |
| 7 | oveq2 | |- ( x = suc y -> ( A +o x ) = ( A +o suc y ) ) |
|
| 8 | oveq2 | |- ( x = suc y -> ( B +o x ) = ( B +o suc y ) ) |
|
| 9 | 7 8 | sseq12d | |- ( x = suc y -> ( ( A +o x ) C_ ( B +o x ) <-> ( A +o suc y ) C_ ( B +o suc y ) ) ) |
| 10 | oveq2 | |- ( x = C -> ( A +o x ) = ( A +o C ) ) |
|
| 11 | oveq2 | |- ( x = C -> ( B +o x ) = ( B +o C ) ) |
|
| 12 | 10 11 | sseq12d | |- ( x = C -> ( ( A +o x ) C_ ( B +o x ) <-> ( A +o C ) C_ ( B +o C ) ) ) |
| 13 | oa0 | |- ( A e. On -> ( A +o (/) ) = A ) |
|
| 14 | 13 | adantr | |- ( ( A e. On /\ B e. On ) -> ( A +o (/) ) = A ) |
| 15 | oa0 | |- ( B e. On -> ( B +o (/) ) = B ) |
|
| 16 | 15 | adantl | |- ( ( A e. On /\ B e. On ) -> ( B +o (/) ) = B ) |
| 17 | 14 16 | sseq12d | |- ( ( A e. On /\ B e. On ) -> ( ( A +o (/) ) C_ ( B +o (/) ) <-> A C_ B ) ) |
| 18 | 17 | biimpar | |- ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( A +o (/) ) C_ ( B +o (/) ) ) |
| 19 | oacl | |- ( ( A e. On /\ y e. On ) -> ( A +o y ) e. On ) |
|
| 20 | eloni | |- ( ( A +o y ) e. On -> Ord ( A +o y ) ) |
|
| 21 | 19 20 | syl | |- ( ( A e. On /\ y e. On ) -> Ord ( A +o y ) ) |
| 22 | oacl | |- ( ( B e. On /\ y e. On ) -> ( B +o y ) e. On ) |
|
| 23 | eloni | |- ( ( B +o y ) e. On -> Ord ( B +o y ) ) |
|
| 24 | 22 23 | syl | |- ( ( B e. On /\ y e. On ) -> Ord ( B +o y ) ) |
| 25 | ordsucsssuc | |- ( ( Ord ( A +o y ) /\ Ord ( B +o y ) ) -> ( ( A +o y ) C_ ( B +o y ) <-> suc ( A +o y ) C_ suc ( B +o y ) ) ) |
|
| 26 | 21 24 25 | syl2an | |- ( ( ( A e. On /\ y e. On ) /\ ( B e. On /\ y e. On ) ) -> ( ( A +o y ) C_ ( B +o y ) <-> suc ( A +o y ) C_ suc ( B +o y ) ) ) |
| 27 | 26 | anandirs | |- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( A +o y ) C_ ( B +o y ) <-> suc ( A +o y ) C_ suc ( B +o y ) ) ) |
| 28 | oasuc | |- ( ( A e. On /\ y e. On ) -> ( A +o suc y ) = suc ( A +o y ) ) |
|
| 29 | 28 | adantlr | |- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( A +o suc y ) = suc ( A +o y ) ) |
| 30 | oasuc | |- ( ( B e. On /\ y e. On ) -> ( B +o suc y ) = suc ( B +o y ) ) |
|
| 31 | 30 | adantll | |- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( B +o suc y ) = suc ( B +o y ) ) |
| 32 | 29 31 | sseq12d | |- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( A +o suc y ) C_ ( B +o suc y ) <-> suc ( A +o y ) C_ suc ( B +o y ) ) ) |
| 33 | 27 32 | bitr4d | |- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( A +o y ) C_ ( B +o y ) <-> ( A +o suc y ) C_ ( B +o suc y ) ) ) |
| 34 | 33 | biimpd | |- ( ( ( A e. On /\ B e. On ) /\ y e. On ) -> ( ( A +o y ) C_ ( B +o y ) -> ( A +o suc y ) C_ ( B +o suc y ) ) ) |
| 35 | 34 | expcom | |- ( y e. On -> ( ( A e. On /\ B e. On ) -> ( ( A +o y ) C_ ( B +o y ) -> ( A +o suc y ) C_ ( B +o suc y ) ) ) ) |
| 36 | 35 | adantrd | |- ( y e. On -> ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( ( A +o y ) C_ ( B +o y ) -> ( A +o suc y ) C_ ( B +o suc y ) ) ) ) |
| 37 | vex | |- x e. _V |
|
| 38 | ss2iun | |- ( A. y e. x ( A +o y ) C_ ( B +o y ) -> U_ y e. x ( A +o y ) C_ U_ y e. x ( B +o y ) ) |
|
| 39 | oalim | |- ( ( A e. On /\ ( x e. _V /\ Lim x ) ) -> ( A +o x ) = U_ y e. x ( A +o y ) ) |
|
| 40 | 39 | adantlr | |- ( ( ( A e. On /\ B e. On ) /\ ( x e. _V /\ Lim x ) ) -> ( A +o x ) = U_ y e. x ( A +o y ) ) |
| 41 | oalim | |- ( ( B e. On /\ ( x e. _V /\ Lim x ) ) -> ( B +o x ) = U_ y e. x ( B +o y ) ) |
|
| 42 | 41 | adantll | |- ( ( ( A e. On /\ B e. On ) /\ ( x e. _V /\ Lim x ) ) -> ( B +o x ) = U_ y e. x ( B +o y ) ) |
| 43 | 40 42 | sseq12d | |- ( ( ( A e. On /\ B e. On ) /\ ( x e. _V /\ Lim x ) ) -> ( ( A +o x ) C_ ( B +o x ) <-> U_ y e. x ( A +o y ) C_ U_ y e. x ( B +o y ) ) ) |
| 44 | 38 43 | imbitrrid | |- ( ( ( A e. On /\ B e. On ) /\ ( x e. _V /\ Lim x ) ) -> ( A. y e. x ( A +o y ) C_ ( B +o y ) -> ( A +o x ) C_ ( B +o x ) ) ) |
| 45 | 37 44 | mpanr1 | |- ( ( ( A e. On /\ B e. On ) /\ Lim x ) -> ( A. y e. x ( A +o y ) C_ ( B +o y ) -> ( A +o x ) C_ ( B +o x ) ) ) |
| 46 | 45 | expcom | |- ( Lim x -> ( ( A e. On /\ B e. On ) -> ( A. y e. x ( A +o y ) C_ ( B +o y ) -> ( A +o x ) C_ ( B +o x ) ) ) ) |
| 47 | 46 | adantrd | |- ( Lim x -> ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( A. y e. x ( A +o y ) C_ ( B +o y ) -> ( A +o x ) C_ ( B +o x ) ) ) ) |
| 48 | 3 6 9 12 18 36 47 | tfinds3 | |- ( C e. On -> ( ( ( A e. On /\ B e. On ) /\ A C_ B ) -> ( A +o C ) C_ ( B +o C ) ) ) |
| 49 | 48 | exp4c | |- ( C e. On -> ( A e. On -> ( B e. On -> ( A C_ B -> ( A +o C ) C_ ( B +o C ) ) ) ) ) |
| 50 | 49 | 3imp231 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A C_ B -> ( A +o C ) C_ ( B +o C ) ) ) |