This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left addition by a constant is a bijection from ordinals to ordinals greater than the constant. (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaf1o | |- ( A e. On -> ( x e. On |-> ( A +o x ) ) : On -1-1-onto-> ( On \ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oacl | |- ( ( A e. On /\ x e. On ) -> ( A +o x ) e. On ) |
|
| 2 | oaword1 | |- ( ( A e. On /\ x e. On ) -> A C_ ( A +o x ) ) |
|
| 3 | ontri1 | |- ( ( A e. On /\ ( A +o x ) e. On ) -> ( A C_ ( A +o x ) <-> -. ( A +o x ) e. A ) ) |
|
| 4 | 1 3 | syldan | |- ( ( A e. On /\ x e. On ) -> ( A C_ ( A +o x ) <-> -. ( A +o x ) e. A ) ) |
| 5 | 2 4 | mpbid | |- ( ( A e. On /\ x e. On ) -> -. ( A +o x ) e. A ) |
| 6 | 1 5 | eldifd | |- ( ( A e. On /\ x e. On ) -> ( A +o x ) e. ( On \ A ) ) |
| 7 | 6 | ralrimiva | |- ( A e. On -> A. x e. On ( A +o x ) e. ( On \ A ) ) |
| 8 | simpl | |- ( ( A e. On /\ y e. ( On \ A ) ) -> A e. On ) |
|
| 9 | eldifi | |- ( y e. ( On \ A ) -> y e. On ) |
|
| 10 | 9 | adantl | |- ( ( A e. On /\ y e. ( On \ A ) ) -> y e. On ) |
| 11 | eldifn | |- ( y e. ( On \ A ) -> -. y e. A ) |
|
| 12 | 11 | adantl | |- ( ( A e. On /\ y e. ( On \ A ) ) -> -. y e. A ) |
| 13 | ontri1 | |- ( ( A e. On /\ y e. On ) -> ( A C_ y <-> -. y e. A ) ) |
|
| 14 | 10 13 | syldan | |- ( ( A e. On /\ y e. ( On \ A ) ) -> ( A C_ y <-> -. y e. A ) ) |
| 15 | 12 14 | mpbird | |- ( ( A e. On /\ y e. ( On \ A ) ) -> A C_ y ) |
| 16 | oawordeu | |- ( ( ( A e. On /\ y e. On ) /\ A C_ y ) -> E! x e. On ( A +o x ) = y ) |
|
| 17 | 8 10 15 16 | syl21anc | |- ( ( A e. On /\ y e. ( On \ A ) ) -> E! x e. On ( A +o x ) = y ) |
| 18 | eqcom | |- ( ( A +o x ) = y <-> y = ( A +o x ) ) |
|
| 19 | 18 | reubii | |- ( E! x e. On ( A +o x ) = y <-> E! x e. On y = ( A +o x ) ) |
| 20 | 17 19 | sylib | |- ( ( A e. On /\ y e. ( On \ A ) ) -> E! x e. On y = ( A +o x ) ) |
| 21 | 20 | ralrimiva | |- ( A e. On -> A. y e. ( On \ A ) E! x e. On y = ( A +o x ) ) |
| 22 | eqid | |- ( x e. On |-> ( A +o x ) ) = ( x e. On |-> ( A +o x ) ) |
|
| 23 | 22 | f1ompt | |- ( ( x e. On |-> ( A +o x ) ) : On -1-1-onto-> ( On \ A ) <-> ( A. x e. On ( A +o x ) e. ( On \ A ) /\ A. y e. ( On \ A ) E! x e. On y = ( A +o x ) ) ) |
| 24 | 7 21 23 | sylanbrc | |- ( A e. On -> ( x e. On |-> ( A +o x ) ) : On -1-1-onto-> ( On \ A ) ) |