This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of an eventually bounded function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | o1res | ⊢ ( 𝐹 ∈ 𝑂(1) → ( 𝐹 ↾ 𝐴 ) ∈ 𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resco | ⊢ ( ( abs ∘ 𝐹 ) ↾ 𝐴 ) = ( abs ∘ ( 𝐹 ↾ 𝐴 ) ) | |
| 2 | o1f | ⊢ ( 𝐹 ∈ 𝑂(1) → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 3 | lo1o1 | ⊢ ( 𝐹 : dom 𝐹 ⟶ ℂ → ( 𝐹 ∈ 𝑂(1) ↔ ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐹 ∈ 𝑂(1) → ( 𝐹 ∈ 𝑂(1) ↔ ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) ) |
| 5 | 4 | ibi | ⊢ ( 𝐹 ∈ 𝑂(1) → ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) |
| 6 | lo1res | ⊢ ( ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) → ( ( abs ∘ 𝐹 ) ↾ 𝐴 ) ∈ ≤𝑂(1) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐹 ∈ 𝑂(1) → ( ( abs ∘ 𝐹 ) ↾ 𝐴 ) ∈ ≤𝑂(1) ) |
| 8 | 1 7 | eqeltrrid | ⊢ ( 𝐹 ∈ 𝑂(1) → ( abs ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ ≤𝑂(1) ) |
| 9 | fresin | ⊢ ( 𝐹 : dom 𝐹 ⟶ ℂ → ( 𝐹 ↾ 𝐴 ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ℂ ) | |
| 10 | lo1o1 | ⊢ ( ( 𝐹 ↾ 𝐴 ) : ( dom 𝐹 ∩ 𝐴 ) ⟶ ℂ → ( ( 𝐹 ↾ 𝐴 ) ∈ 𝑂(1) ↔ ( abs ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ ≤𝑂(1) ) ) | |
| 11 | 2 9 10 | 3syl | ⊢ ( 𝐹 ∈ 𝑂(1) → ( ( 𝐹 ↾ 𝐴 ) ∈ 𝑂(1) ↔ ( abs ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ ≤𝑂(1) ) ) |
| 12 | 8 11 | mpbird | ⊢ ( 𝐹 ∈ 𝑂(1) → ( 𝐹 ↾ 𝐴 ) ∈ 𝑂(1) ) |