This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that a binary operation preserves eventual boundedness. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1of2.1 | ⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → 𝑀 ∈ ℝ ) | |
| o1of2.2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 𝑅 𝑦 ) ∈ ℂ ) | ||
| o1of2.3 | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) ≤ 𝑀 ) ) | ||
| Assertion | o1of2 | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1of2.1 | ⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → 𝑀 ∈ ℝ ) | |
| 2 | o1of2.2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 𝑅 𝑦 ) ∈ ℂ ) | |
| 3 | o1of2.3 | ⊢ ( ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) ≤ 𝑀 ) ) | |
| 4 | o1f | ⊢ ( 𝐹 ∈ 𝑂(1) → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 5 | o1bdd | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ) | |
| 6 | 4 5 | mpdan | ⊢ ( 𝐹 ∈ 𝑂(1) → ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
| 8 | o1f | ⊢ ( 𝐺 ∈ 𝑂(1) → 𝐺 : dom 𝐺 ⟶ ℂ ) | |
| 9 | o1bdd | ⊢ ( ( 𝐺 ∈ 𝑂(1) ∧ 𝐺 : dom 𝐺 ⟶ ℂ ) → ∃ 𝑏 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) | |
| 10 | 8 9 | mpdan | ⊢ ( 𝐺 ∈ 𝑂(1) → ∃ 𝑏 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ∃ 𝑏 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) |
| 12 | reeanv | ⊢ ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ ( ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ↔ ( ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∃ 𝑏 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) | |
| 13 | reeanv | ⊢ ( ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ↔ ( ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) | |
| 14 | inss1 | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 | |
| 15 | ssralv | ⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 → ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ) ) | |
| 16 | 14 15 | ax-mp | ⊢ ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
| 17 | inss2 | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 | |
| 18 | ssralv | ⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 → ( ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) |
| 20 | 16 19 | anim12i | ⊢ ( ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
| 21 | r19.26 | ⊢ ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ↔ ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) | |
| 22 | 20 21 | sylibr | ⊢ ( ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
| 23 | anim12 | ⊢ ( ( ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( ( 𝑎 ≤ 𝑧 ∧ 𝑏 ≤ 𝑧 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) | |
| 24 | simplrl | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝑎 ∈ ℝ ) | |
| 25 | 24 | adantr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 𝑎 ∈ ℝ ) |
| 26 | simplrr | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝑏 ∈ ℝ ) | |
| 27 | 26 | adantr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 𝑏 ∈ ℝ ) |
| 28 | o1dm | ⊢ ( 𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ ) | |
| 29 | 28 | ad3antrrr | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → dom 𝐹 ⊆ ℝ ) |
| 30 | 14 29 | sstrid | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( dom 𝐹 ∩ dom 𝐺 ) ⊆ ℝ ) |
| 31 | 30 | sselda | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → 𝑧 ∈ ℝ ) |
| 32 | maxle | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 ↔ ( 𝑎 ≤ 𝑧 ∧ 𝑏 ≤ 𝑧 ) ) ) | |
| 33 | 25 27 31 32 | syl3anc | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 ↔ ( 𝑎 ≤ 𝑧 ∧ 𝑏 ≤ 𝑧 ) ) ) |
| 34 | 33 | biimpd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( 𝑎 ≤ 𝑧 ∧ 𝑏 ≤ 𝑧 ) ) ) |
| 35 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 36 | 14 | sseli | ⊢ ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑧 ∈ dom 𝐹 ) |
| 37 | ffvelcdm | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) | |
| 38 | 35 36 37 | syl2an | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 39 | 8 | ad3antlr | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝐺 : dom 𝐺 ⟶ ℂ ) |
| 40 | 17 | sseli | ⊢ ( 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑧 ∈ dom 𝐺 ) |
| 41 | ffvelcdm | ⊢ ( ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ 𝑧 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) | |
| 42 | 39 40 41 | syl2an | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 43 | 3 | ralrimivva | ⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) ≤ 𝑀 ) ) |
| 44 | 43 | ad2antlr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) ≤ 𝑀 ) ) |
| 45 | fveq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( abs ‘ 𝑥 ) = ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 46 | 45 | breq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( abs ‘ 𝑥 ) ≤ 𝑚 ↔ ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ) |
| 47 | 46 | anbi1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ) ) |
| 48 | fvoveq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) ) ) | |
| 49 | 48 | breq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) ) ≤ 𝑀 ) ) |
| 50 | 47 49 | imbi12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) ≤ 𝑀 ) ↔ ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) ) ≤ 𝑀 ) ) ) |
| 51 | fveq2 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( abs ‘ 𝑦 ) = ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ) | |
| 52 | 51 | breq1d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( abs ‘ 𝑦 ) ≤ 𝑛 ↔ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) |
| 53 | 52 | anbi2d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) ) |
| 54 | oveq2 | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) | |
| 55 | 54 | fveq2d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 56 | 55 | breq1d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ≤ 𝑀 ) ) |
| 57 | 53 56 | imbi12d | ⊢ ( 𝑦 = ( 𝐺 ‘ 𝑧 ) → ( ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 𝑦 ) ) ≤ 𝑀 ) ↔ ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ≤ 𝑀 ) ) ) |
| 58 | 50 57 | rspc2va | ⊢ ( ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( ( ( abs ‘ 𝑥 ) ≤ 𝑚 ∧ ( abs ‘ 𝑦 ) ≤ 𝑛 ) → ( abs ‘ ( 𝑥 𝑅 𝑦 ) ) ≤ 𝑀 ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ≤ 𝑀 ) ) |
| 59 | 38 42 44 58 | syl21anc | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ≤ 𝑀 ) ) |
| 60 | 35 | ffnd | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝐹 Fn dom 𝐹 ) |
| 61 | 39 | ffnd | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝐺 Fn dom 𝐺 ) |
| 62 | reex | ⊢ ℝ ∈ V | |
| 63 | ssexg | ⊢ ( ( dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V ) → dom 𝐹 ∈ V ) | |
| 64 | 29 62 63 | sylancl | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → dom 𝐹 ∈ V ) |
| 65 | dmexg | ⊢ ( 𝐺 ∈ 𝑂(1) → dom 𝐺 ∈ V ) | |
| 66 | 65 | ad3antlr | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → dom 𝐺 ∈ V ) |
| 67 | eqid | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) | |
| 68 | eqidd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 69 | eqidd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 70 | 60 61 64 66 67 68 69 | ofval | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) |
| 71 | 70 | fveq2d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 72 | 71 | breq1d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) 𝑅 ( 𝐺 ‘ 𝑧 ) ) ) ≤ 𝑀 ) ) |
| 73 | 59 72 | sylibrd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) ) |
| 74 | 34 73 | imim12d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ( 𝑎 ≤ 𝑧 ∧ 𝑏 ≤ 𝑧 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) ) ) |
| 75 | 23 74 | syl5 | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) ) ) |
| 76 | 75 | ralimdva | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) ) ) |
| 77 | 2 | adantl | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) ) → ( 𝑥 𝑅 𝑦 ) ∈ ℂ ) |
| 78 | 77 35 39 64 66 67 | off | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℂ ) |
| 79 | 26 24 | ifcld | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ∈ ℝ ) |
| 80 | 1 | adantl | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → 𝑀 ∈ ℝ ) |
| 81 | elo12r | ⊢ ( ( ( ( 𝐹 ∘f 𝑅 𝐺 ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℂ ∧ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ ℝ ) ∧ ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) ∧ ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) | |
| 82 | 81 | 3expia | ⊢ ( ( ( ( 𝐹 ∘f 𝑅 𝐺 ) : ( dom 𝐹 ∩ dom 𝐺 ) ⟶ ℂ ∧ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ ℝ ) ∧ ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) → ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
| 83 | 78 30 79 80 82 | syl22anc | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑧 → ( abs ‘ ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑧 ) ) ≤ 𝑀 ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
| 84 | 76 83 | syld | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ∀ 𝑧 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
| 85 | 22 84 | syl5 | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ∧ ( 𝑚 ∈ ℝ ∧ 𝑛 ∈ ℝ ) ) → ( ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
| 86 | 85 | rexlimdvva | ⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) → ( ∃ 𝑚 ∈ ℝ ∃ 𝑛 ∈ ℝ ( ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
| 87 | 13 86 | biimtrrid | ⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) → ( ( ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
| 88 | 87 | rexlimdvva | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ ( ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
| 89 | 12 88 | biimtrrid | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ( ( ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ dom 𝐹 ( 𝑎 ≤ 𝑧 → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ 𝑚 ) ∧ ∃ 𝑏 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑧 ∈ dom 𝐺 ( 𝑏 ≤ 𝑧 → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ 𝑛 ) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) ) |
| 90 | 7 11 89 | mp2and | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ∈ 𝑂(1) ) → ( 𝐹 ∘f 𝑅 𝐺 ) ∈ 𝑂(1) ) |