This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvdif.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvdif.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| nvdif.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nvdif.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvpi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) = ( 𝑁 ‘ ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvdif.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvdif.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | nvdif.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | nvdif.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 5 | simp1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑈 ∈ NrmCVec ) | |
| 6 | ax-icn | ⊢ i ∈ ℂ | |
| 7 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( i 𝑆 𝐵 ) ∈ 𝑋 ) |
| 8 | 6 7 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( i 𝑆 𝐵 ) ∈ 𝑋 ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( i 𝑆 𝐵 ) ∈ 𝑋 ) |
| 10 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( i 𝑆 𝐵 ) ∈ 𝑋 ) → ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ∈ 𝑋 ) |
| 11 | 9 10 | syld3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ∈ 𝑋 ) |
| 12 | 1 4 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ∈ ℝ ) |
| 13 | 5 11 12 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ∈ ℝ ) |
| 14 | 13 | recnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ∈ ℂ ) |
| 15 | 14 | mullidd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 1 · ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) |
| 16 | 6 | absnegi | ⊢ ( abs ‘ - i ) = ( abs ‘ i ) |
| 17 | absi | ⊢ ( abs ‘ i ) = 1 | |
| 18 | 16 17 | eqtri | ⊢ ( abs ‘ - i ) = 1 |
| 19 | 18 | oveq1i | ⊢ ( ( abs ‘ - i ) · ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) = ( 1 · ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) |
| 20 | negicn | ⊢ - i ∈ ℂ | |
| 21 | 1 3 4 | nvs | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - i ∈ ℂ ∧ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ∈ 𝑋 ) → ( 𝑁 ‘ ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) = ( ( abs ‘ - i ) · ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) ) |
| 22 | 20 21 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ∈ 𝑋 ) → ( 𝑁 ‘ ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) = ( ( abs ‘ - i ) · ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) ) |
| 23 | 5 11 22 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) = ( ( abs ‘ - i ) · ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) ) |
| 24 | simp2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 25 | 1 2 3 | nvdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - i ∈ ℂ ∧ 𝐴 ∈ 𝑋 ∧ ( i 𝑆 𝐵 ) ∈ 𝑋 ) ) → ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) = ( ( - i 𝑆 𝐴 ) 𝐺 ( - i 𝑆 ( i 𝑆 𝐵 ) ) ) ) |
| 26 | 20 25 | mp3anr1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ ( i 𝑆 𝐵 ) ∈ 𝑋 ) ) → ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) = ( ( - i 𝑆 𝐴 ) 𝐺 ( - i 𝑆 ( i 𝑆 𝐵 ) ) ) ) |
| 27 | 5 24 9 26 | syl12anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) = ( ( - i 𝑆 𝐴 ) 𝐺 ( - i 𝑆 ( i 𝑆 𝐵 ) ) ) ) |
| 28 | 6 6 | mulneg1i | ⊢ ( - i · i ) = - ( i · i ) |
| 29 | ixi | ⊢ ( i · i ) = - 1 | |
| 30 | 29 | negeqi | ⊢ - ( i · i ) = - - 1 |
| 31 | negneg1e1 | ⊢ - - 1 = 1 | |
| 32 | 30 31 | eqtri | ⊢ - ( i · i ) = 1 |
| 33 | 28 32 | eqtri | ⊢ ( - i · i ) = 1 |
| 34 | 33 | oveq1i | ⊢ ( ( - i · i ) 𝑆 𝐵 ) = ( 1 𝑆 𝐵 ) |
| 35 | 1 3 | nvsass | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ) → ( ( - i · i ) 𝑆 𝐵 ) = ( - i 𝑆 ( i 𝑆 𝐵 ) ) ) |
| 36 | 20 35 | mp3anr1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( i ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) ) → ( ( - i · i ) 𝑆 𝐵 ) = ( - i 𝑆 ( i 𝑆 𝐵 ) ) ) |
| 37 | 6 36 | mpanr1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( ( - i · i ) 𝑆 𝐵 ) = ( - i 𝑆 ( i 𝑆 𝐵 ) ) ) |
| 38 | 1 3 | nvsid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 1 𝑆 𝐵 ) = 𝐵 ) |
| 39 | 34 37 38 | 3eqtr3a | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( - i 𝑆 ( i 𝑆 𝐵 ) ) = 𝐵 ) |
| 40 | 39 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - i 𝑆 ( i 𝑆 𝐵 ) ) = 𝐵 ) |
| 41 | 40 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( - i 𝑆 𝐴 ) 𝐺 ( - i 𝑆 ( i 𝑆 𝐵 ) ) ) = ( ( - i 𝑆 𝐴 ) 𝐺 𝐵 ) ) |
| 42 | 1 3 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - i ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - i 𝑆 𝐴 ) ∈ 𝑋 ) |
| 43 | 20 42 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - i 𝑆 𝐴 ) ∈ 𝑋 ) |
| 44 | 43 | 3adant3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - i 𝑆 𝐴 ) ∈ 𝑋 ) |
| 45 | 1 2 | nvcom | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - i 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( - i 𝑆 𝐴 ) 𝐺 𝐵 ) = ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) |
| 46 | 44 45 | syld3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( - i 𝑆 𝐴 ) 𝐺 𝐵 ) = ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) |
| 47 | 27 41 46 | 3eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) = ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) |
| 48 | 47 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( - i 𝑆 ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) = ( 𝑁 ‘ ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) ) |
| 49 | 23 48 | eqtr3d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( abs ‘ - i ) · ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) = ( 𝑁 ‘ ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) ) |
| 50 | 19 49 | eqtr3id | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 1 · ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) ) = ( 𝑁 ‘ ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) ) |
| 51 | 15 50 | eqtr3d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐺 ( i 𝑆 𝐵 ) ) ) = ( 𝑁 ‘ ( 𝐵 𝐺 ( - i 𝑆 𝐴 ) ) ) ) |