This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed vector space is a topological vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nvctvc | ⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ TopVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvcnlm | ⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod ) | |
| 2 | nlmtlm | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ TopMod ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ TopMod ) |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 5 | 4 | nlmnrg | ⊢ ( 𝑊 ∈ NrmMod → ( Scalar ‘ 𝑊 ) ∈ NrmRing ) |
| 6 | 1 5 | syl | ⊢ ( 𝑊 ∈ NrmVec → ( Scalar ‘ 𝑊 ) ∈ NrmRing ) |
| 7 | nvclvec | ⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ LVec ) | |
| 8 | 4 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 9 | 7 8 | syl | ⊢ ( 𝑊 ∈ NrmVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 10 | nrgtdrg | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ NrmRing ∧ ( Scalar ‘ 𝑊 ) ∈ DivRing ) → ( Scalar ‘ 𝑊 ) ∈ TopDRing ) | |
| 11 | 6 9 10 | syl2anc | ⊢ ( 𝑊 ∈ NrmVec → ( Scalar ‘ 𝑊 ) ∈ TopDRing ) |
| 12 | 4 | istvc | ⊢ ( 𝑊 ∈ TopVec ↔ ( 𝑊 ∈ TopMod ∧ ( Scalar ‘ 𝑊 ) ∈ TopDRing ) ) |
| 13 | 3 11 12 | sylanbrc | ⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ TopVec ) |