This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed vector space is a topological vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nvctvc | |- ( W e. NrmVec -> W e. TopVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvcnlm | |- ( W e. NrmVec -> W e. NrmMod ) |
|
| 2 | nlmtlm | |- ( W e. NrmMod -> W e. TopMod ) |
|
| 3 | 1 2 | syl | |- ( W e. NrmVec -> W e. TopMod ) |
| 4 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 5 | 4 | nlmnrg | |- ( W e. NrmMod -> ( Scalar ` W ) e. NrmRing ) |
| 6 | 1 5 | syl | |- ( W e. NrmVec -> ( Scalar ` W ) e. NrmRing ) |
| 7 | nvclvec | |- ( W e. NrmVec -> W e. LVec ) |
|
| 8 | 4 | lvecdrng | |- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
| 9 | 7 8 | syl | |- ( W e. NrmVec -> ( Scalar ` W ) e. DivRing ) |
| 10 | nrgtdrg | |- ( ( ( Scalar ` W ) e. NrmRing /\ ( Scalar ` W ) e. DivRing ) -> ( Scalar ` W ) e. TopDRing ) |
|
| 11 | 6 9 10 | syl2anc | |- ( W e. NrmVec -> ( Scalar ` W ) e. TopDRing ) |
| 12 | 4 | istvc | |- ( W e. TopVec <-> ( W e. TopMod /\ ( Scalar ` W ) e. TopDRing ) ) |
| 13 | 3 11 12 | sylanbrc | |- ( W e. NrmVec -> W e. TopVec ) |