This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 8-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvpncan2.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvpncan2.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| nvpncan2.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| Assertion | nvaddsub4 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝑀 𝐶 ) 𝐺 ( 𝐵 𝑀 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvpncan2.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvpncan2.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | nvpncan2.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 4 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 5 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 6 | 1 2 5 | nvdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - 1 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) ( 𝐶 𝐺 𝐷 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ) ) |
| 7 | 4 6 | mp3anr1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) ( 𝐶 𝐺 𝐷 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ) ) |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) ( 𝐶 𝐺 𝐷 ) ) = ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ) ) |
| 9 | 8 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) ( 𝐶 𝐺 𝐷 ) ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ) ) ) |
| 10 | 1 5 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) ∈ 𝑋 ) |
| 11 | 4 10 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) ∈ 𝑋 ) |
| 12 | 1 5 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐷 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ∈ 𝑋 ) |
| 13 | 4 12 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐷 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ∈ 𝑋 ) |
| 14 | 11 13 | anim12dan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ∈ 𝑋 ) ) |
| 15 | 14 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ∈ 𝑋 ) ) |
| 16 | 1 2 | nvadd4 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ) ) = ( ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) ) 𝐺 ( 𝐵 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ) ) ) |
| 17 | 15 16 | syld3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ) ) = ( ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) ) 𝐺 ( 𝐵 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ) ) ) |
| 18 | 9 17 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) ( 𝐶 𝐺 𝐷 ) ) ) = ( ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) ) 𝐺 ( 𝐵 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ) ) ) |
| 19 | simp1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → 𝑈 ∈ NrmCVec ) | |
| 20 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 21 | 20 | 3expb | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 22 | 21 | 3adant3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| 23 | 1 2 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) → ( 𝐶 𝐺 𝐷 ) ∈ 𝑋 ) |
| 24 | 23 | 3expb | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐶 𝐺 𝐷 ) ∈ 𝑋 ) |
| 25 | 24 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐶 𝐺 𝐷 ) ∈ 𝑋 ) |
| 26 | 1 2 5 3 | nvmval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 𝐺 𝐷 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) ( 𝐶 𝐺 𝐷 ) ) ) ) |
| 27 | 19 22 25 26 | syl3anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) ( 𝐶 𝐺 𝐷 ) ) ) ) |
| 28 | 1 2 5 3 | nvmval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐶 ) = ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) ) ) |
| 29 | 28 | 3adant3r | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐴 𝑀 𝐶 ) = ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) ) ) |
| 30 | 29 | 3adant2r | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐴 𝑀 𝐶 ) = ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) ) ) |
| 31 | 1 2 5 3 | nvmval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) → ( 𝐵 𝑀 𝐷 ) = ( 𝐵 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ) ) |
| 32 | 31 | 3adant3l | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐵 𝑀 𝐷 ) = ( 𝐵 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ) ) |
| 33 | 32 | 3adant2l | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐵 𝑀 𝐷 ) = ( 𝐵 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ) ) |
| 34 | 30 33 | oveq12d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝑀 𝐶 ) 𝐺 ( 𝐵 𝑀 𝐷 ) ) = ( ( 𝐴 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐶 ) ) 𝐺 ( 𝐵 𝐺 ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐷 ) ) ) ) |
| 35 | 18 27 34 | 3eqtr4d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 𝐵 ) 𝑀 ( 𝐶 𝐺 𝐷 ) ) = ( ( 𝐴 𝑀 𝐶 ) 𝐺 ( 𝐵 𝑀 𝐷 ) ) ) |