This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 8-Feb-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvpncan2.1 | |- X = ( BaseSet ` U ) |
|
| nvpncan2.2 | |- G = ( +v ` U ) |
||
| nvpncan2.3 | |- M = ( -v ` U ) |
||
| Assertion | nvaddsub4 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) M ( C G D ) ) = ( ( A M C ) G ( B M D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvpncan2.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvpncan2.2 | |- G = ( +v ` U ) |
|
| 3 | nvpncan2.3 | |- M = ( -v ` U ) |
|
| 4 | neg1cn | |- -u 1 e. CC |
|
| 5 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 6 | 1 2 5 | nvdi | |- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ C e. X /\ D e. X ) ) -> ( -u 1 ( .sOLD ` U ) ( C G D ) ) = ( ( -u 1 ( .sOLD ` U ) C ) G ( -u 1 ( .sOLD ` U ) D ) ) ) |
| 7 | 4 6 | mp3anr1 | |- ( ( U e. NrmCVec /\ ( C e. X /\ D e. X ) ) -> ( -u 1 ( .sOLD ` U ) ( C G D ) ) = ( ( -u 1 ( .sOLD ` U ) C ) G ( -u 1 ( .sOLD ` U ) D ) ) ) |
| 8 | 7 | 3adant2 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( -u 1 ( .sOLD ` U ) ( C G D ) ) = ( ( -u 1 ( .sOLD ` U ) C ) G ( -u 1 ( .sOLD ` U ) D ) ) ) |
| 9 | 8 | oveq2d | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( -u 1 ( .sOLD ` U ) ( C G D ) ) ) = ( ( A G B ) G ( ( -u 1 ( .sOLD ` U ) C ) G ( -u 1 ( .sOLD ` U ) D ) ) ) ) |
| 10 | 1 5 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ C e. X ) -> ( -u 1 ( .sOLD ` U ) C ) e. X ) |
| 11 | 4 10 | mp3an2 | |- ( ( U e. NrmCVec /\ C e. X ) -> ( -u 1 ( .sOLD ` U ) C ) e. X ) |
| 12 | 1 5 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ D e. X ) -> ( -u 1 ( .sOLD ` U ) D ) e. X ) |
| 13 | 4 12 | mp3an2 | |- ( ( U e. NrmCVec /\ D e. X ) -> ( -u 1 ( .sOLD ` U ) D ) e. X ) |
| 14 | 11 13 | anim12dan | |- ( ( U e. NrmCVec /\ ( C e. X /\ D e. X ) ) -> ( ( -u 1 ( .sOLD ` U ) C ) e. X /\ ( -u 1 ( .sOLD ` U ) D ) e. X ) ) |
| 15 | 14 | 3adant2 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( -u 1 ( .sOLD ` U ) C ) e. X /\ ( -u 1 ( .sOLD ` U ) D ) e. X ) ) |
| 16 | 1 2 | nvadd4 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( ( -u 1 ( .sOLD ` U ) C ) e. X /\ ( -u 1 ( .sOLD ` U ) D ) e. X ) ) -> ( ( A G B ) G ( ( -u 1 ( .sOLD ` U ) C ) G ( -u 1 ( .sOLD ` U ) D ) ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) C ) ) G ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) ) |
| 17 | 15 16 | syld3an3 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( ( -u 1 ( .sOLD ` U ) C ) G ( -u 1 ( .sOLD ` U ) D ) ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) C ) ) G ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) ) |
| 18 | 9 17 | eqtrd | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( -u 1 ( .sOLD ` U ) ( C G D ) ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) C ) ) G ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) ) |
| 19 | simp1 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> U e. NrmCVec ) |
|
| 20 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| 21 | 20 | 3expb | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) ) -> ( A G B ) e. X ) |
| 22 | 21 | 3adant3 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( A G B ) e. X ) |
| 23 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ C e. X /\ D e. X ) -> ( C G D ) e. X ) |
| 24 | 23 | 3expb | |- ( ( U e. NrmCVec /\ ( C e. X /\ D e. X ) ) -> ( C G D ) e. X ) |
| 25 | 24 | 3adant2 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( C G D ) e. X ) |
| 26 | 1 2 5 3 | nvmval | |- ( ( U e. NrmCVec /\ ( A G B ) e. X /\ ( C G D ) e. X ) -> ( ( A G B ) M ( C G D ) ) = ( ( A G B ) G ( -u 1 ( .sOLD ` U ) ( C G D ) ) ) ) |
| 27 | 19 22 25 26 | syl3anc | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) M ( C G D ) ) = ( ( A G B ) G ( -u 1 ( .sOLD ` U ) ( C G D ) ) ) ) |
| 28 | 1 2 5 3 | nvmval | |- ( ( U e. NrmCVec /\ A e. X /\ C e. X ) -> ( A M C ) = ( A G ( -u 1 ( .sOLD ` U ) C ) ) ) |
| 29 | 28 | 3adant3r | |- ( ( U e. NrmCVec /\ A e. X /\ ( C e. X /\ D e. X ) ) -> ( A M C ) = ( A G ( -u 1 ( .sOLD ` U ) C ) ) ) |
| 30 | 29 | 3adant2r | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( A M C ) = ( A G ( -u 1 ( .sOLD ` U ) C ) ) ) |
| 31 | 1 2 5 3 | nvmval | |- ( ( U e. NrmCVec /\ B e. X /\ D e. X ) -> ( B M D ) = ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) |
| 32 | 31 | 3adant3l | |- ( ( U e. NrmCVec /\ B e. X /\ ( C e. X /\ D e. X ) ) -> ( B M D ) = ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) |
| 33 | 32 | 3adant2l | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( B M D ) = ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) |
| 34 | 30 33 | oveq12d | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A M C ) G ( B M D ) ) = ( ( A G ( -u 1 ( .sOLD ` U ) C ) ) G ( B G ( -u 1 ( .sOLD ` U ) D ) ) ) ) |
| 35 | 18 27 34 | 3eqtr4d | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) M ( C G D ) ) = ( ( A M C ) G ( B M D ) ) ) |