This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference between two vectors is zero iff they are equal. (Contributed by NM, 24-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvmeq0.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvmeq0.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| nvmeq0.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| Assertion | nvmeq0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑀 𝐵 ) = 𝑍 ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmeq0.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvmeq0.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | nvmeq0.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 4 | 1 2 | nvmcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 ) |
| 5 | 4 | 3expb | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 ) |
| 6 | 1 3 | nvzcl | ⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝑍 ∈ 𝑋 ) |
| 8 | simprr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 9 | 5 7 8 | 3jca | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
| 10 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 11 | 1 10 | nvrcan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( ( 𝐴 𝑀 𝐵 ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝑀 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐵 ) = ( 𝑍 ( +𝑣 ‘ 𝑈 ) 𝐵 ) ↔ ( 𝐴 𝑀 𝐵 ) = 𝑍 ) ) |
| 12 | 9 11 | syldan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( ( 𝐴 𝑀 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐵 ) = ( 𝑍 ( +𝑣 ‘ 𝑈 ) 𝐵 ) ↔ ( 𝐴 𝑀 𝐵 ) = 𝑍 ) ) |
| 13 | 12 | 3impb | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝐴 𝑀 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐵 ) = ( 𝑍 ( +𝑣 ‘ 𝑈 ) 𝐵 ) ↔ ( 𝐴 𝑀 𝐵 ) = 𝑍 ) ) |
| 14 | 1 10 2 | nvnpcan | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑀 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐵 ) = 𝐴 ) |
| 15 | 1 10 3 | nv0lid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝑍 ( +𝑣 ‘ 𝑈 ) 𝐵 ) = 𝐵 ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑍 ( +𝑣 ‘ 𝑈 ) 𝐵 ) = 𝐵 ) |
| 17 | 14 16 | eqeq12d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝐴 𝑀 𝐵 ) ( +𝑣 ‘ 𝑈 ) 𝐵 ) = ( 𝑍 ( +𝑣 ‘ 𝑈 ) 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 18 | 13 17 | bitr3d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑀 𝐵 ) = 𝑍 ↔ 𝐴 = 𝐵 ) ) |