This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elevating a rational number to the power N has the same effect on its canonical components. Same as numdensq , extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | numdenexp | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∧ ( denom ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qnumdencoprm | ⊢ ( 𝐴 ∈ ℚ → ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 ) |
| 3 | 2 | oveq1d | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) = ( 1 ↑ 𝑁 ) ) |
| 4 | qnumcl | ⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( numer ‘ 𝐴 ) ∈ ℤ ) |
| 6 | qdencl | ⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℕ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ 𝐴 ) ∈ ℕ ) |
| 8 | 7 | nnzd | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ 𝐴 ) ∈ ℤ ) |
| 9 | simpr | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 10 | zexpgcd | ⊢ ( ( ( numer ‘ 𝐴 ) ∈ ℤ ∧ ( denom ‘ 𝐴 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) | |
| 11 | 5 8 9 10 | syl3anc | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
| 12 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 13 | 1exp | ⊢ ( 𝑁 ∈ ℤ → ( 1 ↑ 𝑁 ) = 1 ) | |
| 14 | 9 12 13 | 3syl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( 1 ↑ 𝑁 ) = 1 ) |
| 15 | 3 11 14 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) = 1 ) |
| 16 | qeqnumdivden | ⊢ ( 𝐴 ∈ ℚ → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) |
| 18 | 17 | oveq1d | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) ) |
| 19 | 5 | zcnd | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( numer ‘ 𝐴 ) ∈ ℂ ) |
| 20 | 7 | nncnd | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ 𝐴 ) ∈ ℂ ) |
| 21 | 7 | nnne0d | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( denom ‘ 𝐴 ) ≠ 0 ) |
| 22 | 19 20 21 9 | expdivd | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) / ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
| 23 | 18 22 | eqtrd | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) / ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
| 24 | qexpcl | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℚ ) | |
| 25 | zexpcl | ⊢ ( ( ( numer ‘ 𝐴 ) ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℤ ) | |
| 26 | 4 25 | sylan | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℤ ) |
| 27 | 7 9 | nnexpcld | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℕ ) |
| 28 | qnumdenbi | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℚ ∧ ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℤ ∧ ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ∈ ℕ ) → ( ( ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) = 1 ∧ ( 𝐴 ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) / ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) ↔ ( ( numer ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∧ ( denom ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) ) | |
| 29 | 24 26 27 28 | syl3anc | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) = 1 ∧ ( 𝐴 ↑ 𝑁 ) = ( ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) / ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) ↔ ( ( numer ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∧ ( denom ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) ) |
| 30 | 15 23 29 | mpbi2and | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ0 ) → ( ( numer ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( numer ‘ 𝐴 ) ↑ 𝑁 ) ∧ ( denom ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( denom ‘ 𝐴 ) ↑ 𝑁 ) ) ) |