This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | numdensq | ⊢ ( 𝐴 ∈ ℚ → ( ( numer ‘ ( 𝐴 ↑ 2 ) ) = ( ( numer ‘ 𝐴 ) ↑ 2 ) ∧ ( denom ‘ ( 𝐴 ↑ 2 ) ) = ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qnumdencoprm | ⊢ ( 𝐴 ∈ ℚ → ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝐴 ∈ ℚ → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 3 | qnumcl | ⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ ) | |
| 4 | qdencl | ⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℕ ) | |
| 5 | 4 | nnzd | ⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℤ ) |
| 6 | zgcdsq | ⊢ ( ( ( numer ‘ 𝐴 ) ∈ ℤ ∧ ( denom ‘ 𝐴 ) ∈ ℤ ) → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) ↑ 2 ) gcd ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) | |
| 7 | 3 5 6 | syl2anc | ⊢ ( 𝐴 ∈ ℚ → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) ↑ 2 ) gcd ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) |
| 8 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 9 | 8 | a1i | ⊢ ( 𝐴 ∈ ℚ → ( 1 ↑ 2 ) = 1 ) |
| 10 | 2 7 9 | 3eqtr3d | ⊢ ( 𝐴 ∈ ℚ → ( ( ( numer ‘ 𝐴 ) ↑ 2 ) gcd ( ( denom ‘ 𝐴 ) ↑ 2 ) ) = 1 ) |
| 11 | qeqnumdivden | ⊢ ( 𝐴 ∈ ℚ → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) | |
| 12 | 11 | oveq1d | ⊢ ( 𝐴 ∈ ℚ → ( 𝐴 ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ↑ 2 ) ) |
| 13 | 3 | zcnd | ⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℂ ) |
| 14 | 4 | nncnd | ⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℂ ) |
| 15 | 4 | nnne0d | ⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ≠ 0 ) |
| 16 | 13 14 15 | sqdivd | ⊢ ( 𝐴 ∈ ℚ → ( ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) ↑ 2 ) / ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) |
| 17 | 12 16 | eqtrd | ⊢ ( 𝐴 ∈ ℚ → ( 𝐴 ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) ↑ 2 ) / ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) |
| 18 | qsqcl | ⊢ ( 𝐴 ∈ ℚ → ( 𝐴 ↑ 2 ) ∈ ℚ ) | |
| 19 | zsqcl | ⊢ ( ( numer ‘ 𝐴 ) ∈ ℤ → ( ( numer ‘ 𝐴 ) ↑ 2 ) ∈ ℤ ) | |
| 20 | 3 19 | syl | ⊢ ( 𝐴 ∈ ℚ → ( ( numer ‘ 𝐴 ) ↑ 2 ) ∈ ℤ ) |
| 21 | 4 | nnsqcld | ⊢ ( 𝐴 ∈ ℚ → ( ( denom ‘ 𝐴 ) ↑ 2 ) ∈ ℕ ) |
| 22 | qnumdenbi | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℚ ∧ ( ( numer ‘ 𝐴 ) ↑ 2 ) ∈ ℤ ∧ ( ( denom ‘ 𝐴 ) ↑ 2 ) ∈ ℕ ) → ( ( ( ( ( numer ‘ 𝐴 ) ↑ 2 ) gcd ( ( denom ‘ 𝐴 ) ↑ 2 ) ) = 1 ∧ ( 𝐴 ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) ↑ 2 ) / ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) ↔ ( ( numer ‘ ( 𝐴 ↑ 2 ) ) = ( ( numer ‘ 𝐴 ) ↑ 2 ) ∧ ( denom ‘ ( 𝐴 ↑ 2 ) ) = ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) ) | |
| 23 | 18 20 21 22 | syl3anc | ⊢ ( 𝐴 ∈ ℚ → ( ( ( ( ( numer ‘ 𝐴 ) ↑ 2 ) gcd ( ( denom ‘ 𝐴 ) ↑ 2 ) ) = 1 ∧ ( 𝐴 ↑ 2 ) = ( ( ( numer ‘ 𝐴 ) ↑ 2 ) / ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) ↔ ( ( numer ‘ ( 𝐴 ↑ 2 ) ) = ( ( numer ‘ 𝐴 ) ↑ 2 ) ∧ ( denom ‘ ( 𝐴 ↑ 2 ) ) = ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) ) |
| 24 | 10 17 23 | mpbi2and | ⊢ ( 𝐴 ∈ ℚ → ( ( numer ‘ ( 𝐴 ↑ 2 ) ) = ( ( numer ‘ 𝐴 ) ↑ 2 ) ∧ ( denom ‘ ( 𝐴 ↑ 2 ) ) = ( ( denom ‘ 𝐴 ) ↑ 2 ) ) ) |