This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Recover a rational number from its canonical representation. (Contributed by Stefan O'Rear, 13-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qeqnumdivden | ⊢ ( 𝐴 ∈ ℚ → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | ⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) = ( numer ‘ 𝐴 ) ) | |
| 2 | eqid | ⊢ ( denom ‘ 𝐴 ) = ( denom ‘ 𝐴 ) | |
| 3 | 1 2 | jctir | ⊢ ( 𝐴 ∈ ℚ → ( ( numer ‘ 𝐴 ) = ( numer ‘ 𝐴 ) ∧ ( denom ‘ 𝐴 ) = ( denom ‘ 𝐴 ) ) ) |
| 4 | qnumcl | ⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ ) | |
| 5 | qdencl | ⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℕ ) | |
| 6 | qnumdenbi | ⊢ ( ( 𝐴 ∈ ℚ ∧ ( numer ‘ 𝐴 ) ∈ ℤ ∧ ( denom ‘ 𝐴 ) ∈ ℕ ) → ( ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 ∧ 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) ↔ ( ( numer ‘ 𝐴 ) = ( numer ‘ 𝐴 ) ∧ ( denom ‘ 𝐴 ) = ( denom ‘ 𝐴 ) ) ) ) | |
| 7 | 4 5 6 | mpd3an23 | ⊢ ( 𝐴 ∈ ℚ → ( ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 ∧ 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) ↔ ( ( numer ‘ 𝐴 ) = ( numer ‘ 𝐴 ) ∧ ( denom ‘ 𝐴 ) = ( denom ‘ 𝐴 ) ) ) ) |
| 8 | 3 7 | mpbird | ⊢ ( 𝐴 ∈ ℚ → ( ( ( numer ‘ 𝐴 ) gcd ( denom ‘ 𝐴 ) ) = 1 ∧ 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) ) |
| 9 | 8 | simprd | ⊢ ( 𝐴 ∈ ℚ → 𝐴 = ( ( numer ‘ 𝐴 ) / ( denom ‘ 𝐴 ) ) ) |