This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elevating a rational number to the power N has the same effect on its canonical components. Same as numdensq , extended to nonnegative exponents. (Contributed by Steven Nguyen, 5-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | numdenexp | |- ( ( A e. QQ /\ N e. NN0 ) -> ( ( numer ` ( A ^ N ) ) = ( ( numer ` A ) ^ N ) /\ ( denom ` ( A ^ N ) ) = ( ( denom ` A ) ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qnumdencoprm | |- ( A e. QQ -> ( ( numer ` A ) gcd ( denom ` A ) ) = 1 ) |
|
| 2 | 1 | adantr | |- ( ( A e. QQ /\ N e. NN0 ) -> ( ( numer ` A ) gcd ( denom ` A ) ) = 1 ) |
| 3 | 2 | oveq1d | |- ( ( A e. QQ /\ N e. NN0 ) -> ( ( ( numer ` A ) gcd ( denom ` A ) ) ^ N ) = ( 1 ^ N ) ) |
| 4 | qnumcl | |- ( A e. QQ -> ( numer ` A ) e. ZZ ) |
|
| 5 | 4 | adantr | |- ( ( A e. QQ /\ N e. NN0 ) -> ( numer ` A ) e. ZZ ) |
| 6 | qdencl | |- ( A e. QQ -> ( denom ` A ) e. NN ) |
|
| 7 | 6 | adantr | |- ( ( A e. QQ /\ N e. NN0 ) -> ( denom ` A ) e. NN ) |
| 8 | 7 | nnzd | |- ( ( A e. QQ /\ N e. NN0 ) -> ( denom ` A ) e. ZZ ) |
| 9 | simpr | |- ( ( A e. QQ /\ N e. NN0 ) -> N e. NN0 ) |
|
| 10 | zexpgcd | |- ( ( ( numer ` A ) e. ZZ /\ ( denom ` A ) e. ZZ /\ N e. NN0 ) -> ( ( ( numer ` A ) gcd ( denom ` A ) ) ^ N ) = ( ( ( numer ` A ) ^ N ) gcd ( ( denom ` A ) ^ N ) ) ) |
|
| 11 | 5 8 9 10 | syl3anc | |- ( ( A e. QQ /\ N e. NN0 ) -> ( ( ( numer ` A ) gcd ( denom ` A ) ) ^ N ) = ( ( ( numer ` A ) ^ N ) gcd ( ( denom ` A ) ^ N ) ) ) |
| 12 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 13 | 1exp | |- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |
|
| 14 | 9 12 13 | 3syl | |- ( ( A e. QQ /\ N e. NN0 ) -> ( 1 ^ N ) = 1 ) |
| 15 | 3 11 14 | 3eqtr3d | |- ( ( A e. QQ /\ N e. NN0 ) -> ( ( ( numer ` A ) ^ N ) gcd ( ( denom ` A ) ^ N ) ) = 1 ) |
| 16 | qeqnumdivden | |- ( A e. QQ -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |
|
| 17 | 16 | adantr | |- ( ( A e. QQ /\ N e. NN0 ) -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |
| 18 | 17 | oveq1d | |- ( ( A e. QQ /\ N e. NN0 ) -> ( A ^ N ) = ( ( ( numer ` A ) / ( denom ` A ) ) ^ N ) ) |
| 19 | 5 | zcnd | |- ( ( A e. QQ /\ N e. NN0 ) -> ( numer ` A ) e. CC ) |
| 20 | 7 | nncnd | |- ( ( A e. QQ /\ N e. NN0 ) -> ( denom ` A ) e. CC ) |
| 21 | 7 | nnne0d | |- ( ( A e. QQ /\ N e. NN0 ) -> ( denom ` A ) =/= 0 ) |
| 22 | 19 20 21 9 | expdivd | |- ( ( A e. QQ /\ N e. NN0 ) -> ( ( ( numer ` A ) / ( denom ` A ) ) ^ N ) = ( ( ( numer ` A ) ^ N ) / ( ( denom ` A ) ^ N ) ) ) |
| 23 | 18 22 | eqtrd | |- ( ( A e. QQ /\ N e. NN0 ) -> ( A ^ N ) = ( ( ( numer ` A ) ^ N ) / ( ( denom ` A ) ^ N ) ) ) |
| 24 | qexpcl | |- ( ( A e. QQ /\ N e. NN0 ) -> ( A ^ N ) e. QQ ) |
|
| 25 | zexpcl | |- ( ( ( numer ` A ) e. ZZ /\ N e. NN0 ) -> ( ( numer ` A ) ^ N ) e. ZZ ) |
|
| 26 | 4 25 | sylan | |- ( ( A e. QQ /\ N e. NN0 ) -> ( ( numer ` A ) ^ N ) e. ZZ ) |
| 27 | 7 9 | nnexpcld | |- ( ( A e. QQ /\ N e. NN0 ) -> ( ( denom ` A ) ^ N ) e. NN ) |
| 28 | qnumdenbi | |- ( ( ( A ^ N ) e. QQ /\ ( ( numer ` A ) ^ N ) e. ZZ /\ ( ( denom ` A ) ^ N ) e. NN ) -> ( ( ( ( ( numer ` A ) ^ N ) gcd ( ( denom ` A ) ^ N ) ) = 1 /\ ( A ^ N ) = ( ( ( numer ` A ) ^ N ) / ( ( denom ` A ) ^ N ) ) ) <-> ( ( numer ` ( A ^ N ) ) = ( ( numer ` A ) ^ N ) /\ ( denom ` ( A ^ N ) ) = ( ( denom ` A ) ^ N ) ) ) ) |
|
| 29 | 24 26 27 28 | syl3anc | |- ( ( A e. QQ /\ N e. NN0 ) -> ( ( ( ( ( numer ` A ) ^ N ) gcd ( ( denom ` A ) ^ N ) ) = 1 /\ ( A ^ N ) = ( ( ( numer ` A ) ^ N ) / ( ( denom ` A ) ^ N ) ) ) <-> ( ( numer ` ( A ^ N ) ) = ( ( numer ` A ) ^ N ) /\ ( denom ` ( A ^ N ) ) = ( ( denom ` A ) ^ N ) ) ) ) |
| 30 | 15 23 29 | mpbi2and | |- ( ( A e. QQ /\ N e. NN0 ) -> ( ( numer ` ( A ^ N ) ) = ( ( numer ` A ) ^ N ) /\ ( denom ` ( A ^ N ) ) = ( ( denom ` A ) ^ N ) ) ) |