This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation distributes over GCD. zgcdsq extended to nonnegative exponents. nn0expgcd extended to integer bases by symmetry. (Contributed by Steven Nguyen, 5-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zexpgcd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdabs | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) = ( 𝐴 gcd 𝐵 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) = ( 𝐴 gcd 𝐵 ) ) |
| 3 | 2 | eqcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) = ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ) |
| 4 | 3 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) = ( ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ↑ 𝑁 ) ) |
| 5 | nn0abscl | ⊢ ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℕ0 ) | |
| 6 | nn0abscl | ⊢ ( 𝐵 ∈ ℤ → ( abs ‘ 𝐵 ) ∈ ℕ0 ) | |
| 7 | id | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0 ) | |
| 8 | nn0expgcd | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℕ0 ∧ ( abs ‘ 𝐵 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ↑ 𝑁 ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) ) | |
| 9 | 5 6 7 8 | syl3an | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) gcd ( abs ‘ 𝐵 ) ) ↑ 𝑁 ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) ) |
| 10 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 12 | simp3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 13 | 11 12 | absexpd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) ) |
| 14 | 13 | eqcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) = ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) ) |
| 15 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 17 | 16 12 | absexpd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) = ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) |
| 18 | 17 | eqcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) = ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) |
| 19 | 14 18 | oveq12d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) = ( ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) gcd ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 20 | zexpcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) | |
| 21 | 20 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
| 22 | zexpcl | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) | |
| 23 | 22 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) |
| 24 | gcdabs | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℤ ∧ ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) → ( ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) gcd ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) | |
| 25 | 21 23 24 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( abs ‘ ( 𝐴 ↑ 𝑁 ) ) gcd ( abs ‘ ( 𝐵 ↑ 𝑁 ) ) ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |
| 26 | 19 25 | eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑁 ) gcd ( ( abs ‘ 𝐵 ) ↑ 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |
| 27 | 4 9 26 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |