This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of nqereu : if two fractions are both reduced and equivalent, then they are equal. (Contributed by Mario Carneiro, 6-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enqeq | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵 ) → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵 ) → ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) ) | |
| 2 | elpqn | ⊢ ( 𝐵 ∈ Q → 𝐵 ∈ ( N × N ) ) | |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵 ) → 𝐵 ∈ ( N × N ) ) |
| 4 | nqereu | ⊢ ( 𝐵 ∈ ( N × N ) → ∃! 𝑥 ∈ Q 𝑥 ~Q 𝐵 ) | |
| 5 | reurmo | ⊢ ( ∃! 𝑥 ∈ Q 𝑥 ~Q 𝐵 → ∃* 𝑥 ∈ Q 𝑥 ~Q 𝐵 ) | |
| 6 | 3 4 5 | 3syl | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵 ) → ∃* 𝑥 ∈ Q 𝑥 ~Q 𝐵 ) |
| 7 | df-rmo | ⊢ ( ∃* 𝑥 ∈ Q 𝑥 ~Q 𝐵 ↔ ∃* 𝑥 ( 𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵 ) ) | |
| 8 | 6 7 | sylib | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵 ) → ∃* 𝑥 ( 𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵 ) ) |
| 9 | 3simpb | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵 ) → ( 𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵 ) ) | |
| 10 | simp2 | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵 ) → 𝐵 ∈ Q ) | |
| 11 | enqer | ⊢ ~Q Er ( N × N ) | |
| 12 | 11 | a1i | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵 ) → ~Q Er ( N × N ) ) |
| 13 | 12 3 | erref | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵 ) → 𝐵 ~Q 𝐵 ) |
| 14 | 10 13 | jca | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵 ) → ( 𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵 ) ) |
| 15 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ Q ↔ 𝐴 ∈ Q ) ) | |
| 16 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ~Q 𝐵 ↔ 𝐴 ~Q 𝐵 ) ) | |
| 17 | 15 16 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵 ) ↔ ( 𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵 ) ) ) |
| 18 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ Q ↔ 𝐵 ∈ Q ) ) | |
| 19 | breq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ~Q 𝐵 ↔ 𝐵 ~Q 𝐵 ) ) | |
| 20 | 18 19 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵 ) ↔ ( 𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵 ) ) ) |
| 21 | 17 20 | moi | ⊢ ( ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) ∧ ∃* 𝑥 ( 𝑥 ∈ Q ∧ 𝑥 ~Q 𝐵 ) ∧ ( ( 𝐴 ∈ Q ∧ 𝐴 ~Q 𝐵 ) ∧ ( 𝐵 ∈ Q ∧ 𝐵 ~Q 𝐵 ) ) ) → 𝐴 = 𝐵 ) |
| 22 | 1 8 9 14 21 | syl112anc | ⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵 ) → 𝐴 = 𝐵 ) |