This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of parallelogram law for norms. Part of Lemma 3.6 of Beran p. 100. (Contributed by NM, 5-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normpar2.1 | ⊢ 𝐴 ∈ ℋ | |
| normpar2.2 | ⊢ 𝐵 ∈ ℋ | ||
| normpar2.3 | ⊢ 𝐶 ∈ ℋ | ||
| Assertion | normpar2i | ⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) = ( ( ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) − ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normpar2.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | normpar2.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | normpar2.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | 1 2 | hvaddcli | ⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ |
| 5 | 2cn | ⊢ 2 ∈ ℂ | |
| 6 | 5 3 | hvmulcli | ⊢ ( 2 ·ℎ 𝐶 ) ∈ ℋ |
| 7 | 4 6 | hvsubcli | ⊢ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ∈ ℋ |
| 8 | 7 | normcli | ⊢ ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ∈ ℝ |
| 9 | 8 | resqcli | ⊢ ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ∈ ℝ |
| 10 | 9 | recni | ⊢ ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ∈ ℂ |
| 11 | 1 2 | hvsubcli | ⊢ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ |
| 12 | 11 | normcli | ⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ∈ ℝ |
| 13 | 12 | resqcli | ⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ∈ ℝ |
| 14 | 13 | recni | ⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ∈ ℂ |
| 15 | 4cn | ⊢ 4 ∈ ℂ | |
| 16 | 1 3 | hvsubcli | ⊢ ( 𝐴 −ℎ 𝐶 ) ∈ ℋ |
| 17 | 16 | normcli | ⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ∈ ℝ |
| 18 | 17 | resqcli | ⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ∈ ℝ |
| 19 | 18 | recni | ⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ∈ ℂ |
| 20 | 15 19 | mulcli | ⊢ ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) ∈ ℂ |
| 21 | 2 3 | hvsubcli | ⊢ ( 𝐵 −ℎ 𝐶 ) ∈ ℋ |
| 22 | 21 | normcli | ⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ∈ ℝ |
| 23 | 22 | resqcli | ⊢ ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ∈ ℝ |
| 24 | 23 | recni | ⊢ ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ∈ ℂ |
| 25 | 15 24 | mulcli | ⊢ ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ∈ ℂ |
| 26 | 2ne0 | ⊢ 2 ≠ 0 | |
| 27 | 20 25 5 26 | divdiri | ⊢ ( ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) / 2 ) = ( ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) + ( ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) ) |
| 28 | 20 25 | addcomi | ⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) = ( ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) ) |
| 29 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 30 | 29 6 | hvmulcli | ⊢ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ∈ ℋ |
| 31 | 29 11 | hvmulcli | ⊢ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ∈ ℋ |
| 32 | 4 30 31 | hvadd32i | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 33 | 4 6 | hvsubvali | ⊢ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 34 | 33 | oveq1i | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) |
| 35 | 5 2 | hvmulcli | ⊢ ( 2 ·ℎ 𝐵 ) ∈ ℋ |
| 36 | 35 6 | hvsubvali | ⊢ ( ( 2 ·ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) = ( ( 2 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 37 | 1 2 | hvcomi | ⊢ ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) |
| 38 | 1 2 | hvnegdii | ⊢ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 −ℎ 𝐴 ) |
| 39 | 37 38 | oveq12i | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( ( 𝐵 +ℎ 𝐴 ) +ℎ ( 𝐵 −ℎ 𝐴 ) ) |
| 40 | 2 1 | hvsubcan2i | ⊢ ( ( 𝐵 +ℎ 𝐴 ) +ℎ ( 𝐵 −ℎ 𝐴 ) ) = ( 2 ·ℎ 𝐵 ) |
| 41 | 39 40 | eqtri | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( 2 ·ℎ 𝐵 ) |
| 42 | 41 | oveq1i | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) = ( ( 2 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 43 | 36 42 | eqtr4i | ⊢ ( ( 2 ·ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 44 | 32 34 43 | 3eqtr4i | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( ( 2 ·ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) |
| 45 | 7 11 | hvsubvali | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) ) |
| 46 | 5 2 3 | hvsubdistr1i | ⊢ ( 2 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = ( ( 2 ·ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) |
| 47 | 44 45 46 | 3eqtr4i | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 2 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) |
| 48 | 47 | fveq2i | ⊢ ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( normℎ ‘ ( 2 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) ) |
| 49 | 5 21 | norm-iii-i | ⊢ ( normℎ ‘ ( 2 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) ) = ( ( abs ‘ 2 ) · ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) |
| 50 | 0le2 | ⊢ 0 ≤ 2 | |
| 51 | 2re | ⊢ 2 ∈ ℝ | |
| 52 | 51 | absidi | ⊢ ( 0 ≤ 2 → ( abs ‘ 2 ) = 2 ) |
| 53 | 50 52 | ax-mp | ⊢ ( abs ‘ 2 ) = 2 |
| 54 | 53 | oveq1i | ⊢ ( ( abs ‘ 2 ) · ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) = ( 2 · ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) |
| 55 | 48 49 54 | 3eqtri | ⊢ ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( 2 · ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) |
| 56 | 55 | oveq1i | ⊢ ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) = ( ( 2 · ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ↑ 2 ) |
| 57 | 22 | recni | ⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ∈ ℂ |
| 58 | 5 57 | sqmuli | ⊢ ( ( 2 · ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 59 | sq2 | ⊢ ( 2 ↑ 2 ) = 4 | |
| 60 | 59 | oveq1i | ⊢ ( ( 2 ↑ 2 ) · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) = ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 61 | 56 58 60 | 3eqtri | ⊢ ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) = ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 62 | 1 2 | hvsubcan2i | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 2 ·ℎ 𝐴 ) |
| 63 | 62 | oveq1i | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) = ( ( 2 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 64 | 4 30 11 | hvadd32i | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 65 | 5 1 | hvmulcli | ⊢ ( 2 ·ℎ 𝐴 ) ∈ ℋ |
| 66 | 65 6 | hvsubvali | ⊢ ( ( 2 ·ℎ 𝐴 ) −ℎ ( 2 ·ℎ 𝐶 ) ) = ( ( 2 ·ℎ 𝐴 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) |
| 67 | 63 64 66 | 3eqtr4i | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( ( 2 ·ℎ 𝐴 ) −ℎ ( 2 ·ℎ 𝐶 ) ) |
| 68 | 33 | oveq1i | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 2 ·ℎ 𝐶 ) ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) |
| 69 | 5 1 3 | hvsubdistr1i | ⊢ ( 2 ·ℎ ( 𝐴 −ℎ 𝐶 ) ) = ( ( 2 ·ℎ 𝐴 ) −ℎ ( 2 ·ℎ 𝐶 ) ) |
| 70 | 67 68 69 | 3eqtr4i | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 2 ·ℎ ( 𝐴 −ℎ 𝐶 ) ) |
| 71 | 70 | fveq2i | ⊢ ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( normℎ ‘ ( 2 ·ℎ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 72 | 5 16 | norm-iii-i | ⊢ ( normℎ ‘ ( 2 ·ℎ ( 𝐴 −ℎ 𝐶 ) ) ) = ( ( abs ‘ 2 ) · ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 73 | 53 | oveq1i | ⊢ ( ( abs ‘ 2 ) · ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) = ( 2 · ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 74 | 71 72 73 | 3eqtri | ⊢ ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) = ( 2 · ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 75 | 74 | oveq1i | ⊢ ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) = ( ( 2 · ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) ↑ 2 ) |
| 76 | 17 | recni | ⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ∈ ℂ |
| 77 | 5 76 | sqmuli | ⊢ ( ( 2 · ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 78 | 59 | oveq1i | ⊢ ( ( 2 ↑ 2 ) · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) = ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 79 | 75 77 78 | 3eqtri | ⊢ ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) = ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 80 | 61 79 | oveq12i | ⊢ ( ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) ) = ( ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) ) |
| 81 | 28 80 | eqtr4i | ⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) = ( ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) ) |
| 82 | 7 11 | normpari | ⊢ ( ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) −ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) ) ↑ 2 ) ) = ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) ) |
| 83 | 81 82 | eqtri | ⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) = ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) ) |
| 84 | 83 | oveq1i | ⊢ ( ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) / 2 ) = ( ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) ) / 2 ) |
| 85 | 5 10 | mulcli | ⊢ ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) ∈ ℂ |
| 86 | 5 14 | mulcli | ⊢ ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) ∈ ℂ |
| 87 | 85 86 5 26 | divdiri | ⊢ ( ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) ) / 2 ) = ( ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) / 2 ) + ( ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) / 2 ) ) |
| 88 | 10 5 26 | divcan3i | ⊢ ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) / 2 ) = ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) |
| 89 | 14 5 26 | divcan3i | ⊢ ( ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) / 2 ) = ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) |
| 90 | 88 89 | oveq12i | ⊢ ( ( ( 2 · ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) / 2 ) + ( ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) / 2 ) ) = ( ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) |
| 91 | 84 87 90 | 3eqtri | ⊢ ( ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) / 2 ) = ( ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) |
| 92 | 15 19 5 26 | div23i | ⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) = ( ( 4 / 2 ) · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 93 | 4div2e2 | ⊢ ( 4 / 2 ) = 2 | |
| 94 | 93 | oveq1i | ⊢ ( ( 4 / 2 ) · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) = ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 95 | 92 94 | eqtri | ⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) = ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 96 | 15 24 5 26 | div23i | ⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) = ( ( 4 / 2 ) · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 97 | 93 | oveq1i | ⊢ ( ( 4 / 2 ) · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) = ( 2 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 98 | 96 97 | eqtri | ⊢ ( ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) = ( 2 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) |
| 99 | 95 98 | oveq12i | ⊢ ( ( ( 4 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) + ( ( 4 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) / 2 ) ) = ( ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) |
| 100 | 27 91 99 | 3eqtr3i | ⊢ ( ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) ) = ( ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) |
| 101 | 10 14 100 | mvlladdi | ⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) = ( ( ( 2 · ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ↑ 2 ) ) ) − ( ( normℎ ‘ ( ( 𝐴 +ℎ 𝐵 ) −ℎ ( 2 ·ℎ 𝐶 ) ) ) ↑ 2 ) ) |