This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 3.3(iii) of Beran p. 97. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | norm-iii.1 | ⊢ 𝐴 ∈ ℂ | |
| norm-iii.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | norm-iii-i | ⊢ ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm-iii.1 | ⊢ 𝐴 ∈ ℂ | |
| 2 | norm-iii.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 1 1 2 2 | his35i | ⊢ ( ( 𝐴 ·ℎ 𝐵 ) ·ih ( 𝐴 ·ℎ 𝐵 ) ) = ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) |
| 4 | 3 | fveq2i | ⊢ ( √ ‘ ( ( 𝐴 ·ℎ 𝐵 ) ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) = ( √ ‘ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) ) |
| 5 | 1 | cjmulrcli | ⊢ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ |
| 6 | hiidrcl | ⊢ ( 𝐵 ∈ ℋ → ( 𝐵 ·ih 𝐵 ) ∈ ℝ ) | |
| 7 | 2 6 | ax-mp | ⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℝ |
| 8 | 1 | cjmulge0i | ⊢ 0 ≤ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) |
| 9 | hiidge0 | ⊢ ( 𝐵 ∈ ℋ → 0 ≤ ( 𝐵 ·ih 𝐵 ) ) | |
| 10 | 2 9 | ax-mp | ⊢ 0 ≤ ( 𝐵 ·ih 𝐵 ) |
| 11 | 5 7 8 10 | sqrtmulii | ⊢ ( √ ‘ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) · ( 𝐵 ·ih 𝐵 ) ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 12 | 4 11 | eqtri | ⊢ ( √ ‘ ( ( 𝐴 ·ℎ 𝐵 ) ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 13 | 1 2 | hvmulcli | ⊢ ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ |
| 14 | normval | ⊢ ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ → ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( √ ‘ ( ( 𝐴 ·ℎ 𝐵 ) ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( √ ‘ ( ( 𝐴 ·ℎ 𝐵 ) ·ih ( 𝐴 ·ℎ 𝐵 ) ) ) |
| 16 | absval | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) | |
| 17 | 1 16 | ax-mp | ⊢ ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 18 | normval | ⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) = ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) | |
| 19 | 2 18 | ax-mp | ⊢ ( normℎ ‘ 𝐵 ) = ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) |
| 20 | 17 19 | oveq12i | ⊢ ( ( abs ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) = ( ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 21 | 12 15 20 | 3eqtr4i | ⊢ ( normℎ ‘ ( 𝐴 ·ℎ 𝐵 ) ) = ( ( abs ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) |