This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of parallelogram law for norms. Part of Lemma 3.6 of Beran p. 100. (Contributed by NM, 5-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normpar2.1 | |- A e. ~H |
|
| normpar2.2 | |- B e. ~H |
||
| normpar2.3 | |- C e. ~H |
||
| Assertion | normpar2i | |- ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) - ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normpar2.1 | |- A e. ~H |
|
| 2 | normpar2.2 | |- B e. ~H |
|
| 3 | normpar2.3 | |- C e. ~H |
|
| 4 | 1 2 | hvaddcli | |- ( A +h B ) e. ~H |
| 5 | 2cn | |- 2 e. CC |
|
| 6 | 5 3 | hvmulcli | |- ( 2 .h C ) e. ~H |
| 7 | 4 6 | hvsubcli | |- ( ( A +h B ) -h ( 2 .h C ) ) e. ~H |
| 8 | 7 | normcli | |- ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) e. RR |
| 9 | 8 | resqcli | |- ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) e. RR |
| 10 | 9 | recni | |- ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) e. CC |
| 11 | 1 2 | hvsubcli | |- ( A -h B ) e. ~H |
| 12 | 11 | normcli | |- ( normh ` ( A -h B ) ) e. RR |
| 13 | 12 | resqcli | |- ( ( normh ` ( A -h B ) ) ^ 2 ) e. RR |
| 14 | 13 | recni | |- ( ( normh ` ( A -h B ) ) ^ 2 ) e. CC |
| 15 | 4cn | |- 4 e. CC |
|
| 16 | 1 3 | hvsubcli | |- ( A -h C ) e. ~H |
| 17 | 16 | normcli | |- ( normh ` ( A -h C ) ) e. RR |
| 18 | 17 | resqcli | |- ( ( normh ` ( A -h C ) ) ^ 2 ) e. RR |
| 19 | 18 | recni | |- ( ( normh ` ( A -h C ) ) ^ 2 ) e. CC |
| 20 | 15 19 | mulcli | |- ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) e. CC |
| 21 | 2 3 | hvsubcli | |- ( B -h C ) e. ~H |
| 22 | 21 | normcli | |- ( normh ` ( B -h C ) ) e. RR |
| 23 | 22 | resqcli | |- ( ( normh ` ( B -h C ) ) ^ 2 ) e. RR |
| 24 | 23 | recni | |- ( ( normh ` ( B -h C ) ) ^ 2 ) e. CC |
| 25 | 15 24 | mulcli | |- ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) e. CC |
| 26 | 2ne0 | |- 2 =/= 0 |
|
| 27 | 20 25 5 26 | divdiri | |- ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) / 2 ) = ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) / 2 ) + ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) / 2 ) ) |
| 28 | 20 25 | addcomi | |- ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) = ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) ) |
| 29 | neg1cn | |- -u 1 e. CC |
|
| 30 | 29 6 | hvmulcli | |- ( -u 1 .h ( 2 .h C ) ) e. ~H |
| 31 | 29 11 | hvmulcli | |- ( -u 1 .h ( A -h B ) ) e. ~H |
| 32 | 4 30 31 | hvadd32i | |- ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( -u 1 .h ( A -h B ) ) ) = ( ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) +h ( -u 1 .h ( 2 .h C ) ) ) |
| 33 | 4 6 | hvsubvali | |- ( ( A +h B ) -h ( 2 .h C ) ) = ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) |
| 34 | 33 | oveq1i | |- ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( -u 1 .h ( A -h B ) ) ) = ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( -u 1 .h ( A -h B ) ) ) |
| 35 | 5 2 | hvmulcli | |- ( 2 .h B ) e. ~H |
| 36 | 35 6 | hvsubvali | |- ( ( 2 .h B ) -h ( 2 .h C ) ) = ( ( 2 .h B ) +h ( -u 1 .h ( 2 .h C ) ) ) |
| 37 | 1 2 | hvcomi | |- ( A +h B ) = ( B +h A ) |
| 38 | 1 2 | hvnegdii | |- ( -u 1 .h ( A -h B ) ) = ( B -h A ) |
| 39 | 37 38 | oveq12i | |- ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) = ( ( B +h A ) +h ( B -h A ) ) |
| 40 | 2 1 | hvsubcan2i | |- ( ( B +h A ) +h ( B -h A ) ) = ( 2 .h B ) |
| 41 | 39 40 | eqtri | |- ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) = ( 2 .h B ) |
| 42 | 41 | oveq1i | |- ( ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) +h ( -u 1 .h ( 2 .h C ) ) ) = ( ( 2 .h B ) +h ( -u 1 .h ( 2 .h C ) ) ) |
| 43 | 36 42 | eqtr4i | |- ( ( 2 .h B ) -h ( 2 .h C ) ) = ( ( ( A +h B ) +h ( -u 1 .h ( A -h B ) ) ) +h ( -u 1 .h ( 2 .h C ) ) ) |
| 44 | 32 34 43 | 3eqtr4i | |- ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( -u 1 .h ( A -h B ) ) ) = ( ( 2 .h B ) -h ( 2 .h C ) ) |
| 45 | 7 11 | hvsubvali | |- ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) = ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( -u 1 .h ( A -h B ) ) ) |
| 46 | 5 2 3 | hvsubdistr1i | |- ( 2 .h ( B -h C ) ) = ( ( 2 .h B ) -h ( 2 .h C ) ) |
| 47 | 44 45 46 | 3eqtr4i | |- ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) = ( 2 .h ( B -h C ) ) |
| 48 | 47 | fveq2i | |- ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) = ( normh ` ( 2 .h ( B -h C ) ) ) |
| 49 | 5 21 | norm-iii-i | |- ( normh ` ( 2 .h ( B -h C ) ) ) = ( ( abs ` 2 ) x. ( normh ` ( B -h C ) ) ) |
| 50 | 0le2 | |- 0 <_ 2 |
|
| 51 | 2re | |- 2 e. RR |
|
| 52 | 51 | absidi | |- ( 0 <_ 2 -> ( abs ` 2 ) = 2 ) |
| 53 | 50 52 | ax-mp | |- ( abs ` 2 ) = 2 |
| 54 | 53 | oveq1i | |- ( ( abs ` 2 ) x. ( normh ` ( B -h C ) ) ) = ( 2 x. ( normh ` ( B -h C ) ) ) |
| 55 | 48 49 54 | 3eqtri | |- ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) = ( 2 x. ( normh ` ( B -h C ) ) ) |
| 56 | 55 | oveq1i | |- ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) = ( ( 2 x. ( normh ` ( B -h C ) ) ) ^ 2 ) |
| 57 | 22 | recni | |- ( normh ` ( B -h C ) ) e. CC |
| 58 | 5 57 | sqmuli | |- ( ( 2 x. ( normh ` ( B -h C ) ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) |
| 59 | sq2 | |- ( 2 ^ 2 ) = 4 |
|
| 60 | 59 | oveq1i | |- ( ( 2 ^ 2 ) x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) = ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) |
| 61 | 56 58 60 | 3eqtri | |- ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) = ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) |
| 62 | 1 2 | hvsubcan2i | |- ( ( A +h B ) +h ( A -h B ) ) = ( 2 .h A ) |
| 63 | 62 | oveq1i | |- ( ( ( A +h B ) +h ( A -h B ) ) +h ( -u 1 .h ( 2 .h C ) ) ) = ( ( 2 .h A ) +h ( -u 1 .h ( 2 .h C ) ) ) |
| 64 | 4 30 11 | hvadd32i | |- ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( A -h B ) ) = ( ( ( A +h B ) +h ( A -h B ) ) +h ( -u 1 .h ( 2 .h C ) ) ) |
| 65 | 5 1 | hvmulcli | |- ( 2 .h A ) e. ~H |
| 66 | 65 6 | hvsubvali | |- ( ( 2 .h A ) -h ( 2 .h C ) ) = ( ( 2 .h A ) +h ( -u 1 .h ( 2 .h C ) ) ) |
| 67 | 63 64 66 | 3eqtr4i | |- ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( A -h B ) ) = ( ( 2 .h A ) -h ( 2 .h C ) ) |
| 68 | 33 | oveq1i | |- ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) = ( ( ( A +h B ) +h ( -u 1 .h ( 2 .h C ) ) ) +h ( A -h B ) ) |
| 69 | 5 1 3 | hvsubdistr1i | |- ( 2 .h ( A -h C ) ) = ( ( 2 .h A ) -h ( 2 .h C ) ) |
| 70 | 67 68 69 | 3eqtr4i | |- ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) = ( 2 .h ( A -h C ) ) |
| 71 | 70 | fveq2i | |- ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) = ( normh ` ( 2 .h ( A -h C ) ) ) |
| 72 | 5 16 | norm-iii-i | |- ( normh ` ( 2 .h ( A -h C ) ) ) = ( ( abs ` 2 ) x. ( normh ` ( A -h C ) ) ) |
| 73 | 53 | oveq1i | |- ( ( abs ` 2 ) x. ( normh ` ( A -h C ) ) ) = ( 2 x. ( normh ` ( A -h C ) ) ) |
| 74 | 71 72 73 | 3eqtri | |- ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) = ( 2 x. ( normh ` ( A -h C ) ) ) |
| 75 | 74 | oveq1i | |- ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) = ( ( 2 x. ( normh ` ( A -h C ) ) ) ^ 2 ) |
| 76 | 17 | recni | |- ( normh ` ( A -h C ) ) e. CC |
| 77 | 5 76 | sqmuli | |- ( ( 2 x. ( normh ` ( A -h C ) ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) |
| 78 | 59 | oveq1i | |- ( ( 2 ^ 2 ) x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) = ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) |
| 79 | 75 77 78 | 3eqtri | |- ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) = ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) |
| 80 | 61 79 | oveq12i | |- ( ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) + ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) ) = ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) ) |
| 81 | 28 80 | eqtr4i | |- ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) = ( ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) + ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) ) |
| 82 | 7 11 | normpari | |- ( ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) -h ( A -h B ) ) ) ^ 2 ) + ( ( normh ` ( ( ( A +h B ) -h ( 2 .h C ) ) +h ( A -h B ) ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) |
| 83 | 81 82 | eqtri | |- ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) = ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) |
| 84 | 83 | oveq1i | |- ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) / 2 ) = ( ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) / 2 ) |
| 85 | 5 10 | mulcli | |- ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) e. CC |
| 86 | 5 14 | mulcli | |- ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) e. CC |
| 87 | 85 86 5 26 | divdiri | |- ( ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) ) / 2 ) = ( ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) / 2 ) + ( ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) / 2 ) ) |
| 88 | 10 5 26 | divcan3i | |- ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) / 2 ) = ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) |
| 89 | 14 5 26 | divcan3i | |- ( ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) / 2 ) = ( ( normh ` ( A -h B ) ) ^ 2 ) |
| 90 | 88 89 | oveq12i | |- ( ( ( 2 x. ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) / 2 ) + ( ( 2 x. ( ( normh ` ( A -h B ) ) ^ 2 ) ) / 2 ) ) = ( ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) + ( ( normh ` ( A -h B ) ) ^ 2 ) ) |
| 91 | 84 87 90 | 3eqtri | |- ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) / 2 ) = ( ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) + ( ( normh ` ( A -h B ) ) ^ 2 ) ) |
| 92 | 15 19 5 26 | div23i | |- ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) / 2 ) = ( ( 4 / 2 ) x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) |
| 93 | 4div2e2 | |- ( 4 / 2 ) = 2 |
|
| 94 | 93 | oveq1i | |- ( ( 4 / 2 ) x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) = ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) |
| 95 | 92 94 | eqtri | |- ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) / 2 ) = ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) |
| 96 | 15 24 5 26 | div23i | |- ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) / 2 ) = ( ( 4 / 2 ) x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) |
| 97 | 93 | oveq1i | |- ( ( 4 / 2 ) x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) = ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) |
| 98 | 96 97 | eqtri | |- ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) / 2 ) = ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) |
| 99 | 95 98 | oveq12i | |- ( ( ( 4 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) / 2 ) + ( ( 4 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) / 2 ) ) = ( ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) |
| 100 | 27 91 99 | 3eqtr3i | |- ( ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) + ( ( normh ` ( A -h B ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) |
| 101 | 10 14 100 | mvlladdi | |- ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( ( 2 x. ( ( normh ` ( A -h C ) ) ^ 2 ) ) + ( 2 x. ( ( normh ` ( B -h C ) ) ^ 2 ) ) ) - ( ( normh ` ( ( A +h B ) -h ( 2 .h C ) ) ) ^ 2 ) ) |