This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Parallelogram law for norms. Remark 3.4(B) of Beran p. 98. (Contributed by NM, 21-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normpar.1 | ⊢ 𝐴 ∈ ℋ | |
| normpar.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | normpari | ⊢ ( ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) ) = ( ( 2 · ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normpar.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | normpar.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 1 2 | hvsubcli | ⊢ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ |
| 4 | 3 | normsqi | ⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) |
| 5 | 1 2 | hvaddcli | ⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ |
| 6 | 5 | normsqi | ⊢ ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) |
| 7 | 4 6 | oveq12i | ⊢ ( ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) + ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) |
| 8 | 1 | normsqi | ⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) |
| 9 | 8 | oveq2i | ⊢ ( 2 · ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) = ( 2 · ( 𝐴 ·ih 𝐴 ) ) |
| 10 | 1 1 | hicli | ⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℂ |
| 11 | 10 | 2timesi | ⊢ ( 2 · ( 𝐴 ·ih 𝐴 ) ) = ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) |
| 12 | 9 11 | eqtri | ⊢ ( 2 · ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) = ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) |
| 13 | 2 | normsqi | ⊢ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 ·ih 𝐵 ) |
| 14 | 13 | oveq2i | ⊢ ( 2 · ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) = ( 2 · ( 𝐵 ·ih 𝐵 ) ) |
| 15 | 2 2 | hicli | ⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
| 16 | 15 | 2timesi | ⊢ ( 2 · ( 𝐵 ·ih 𝐵 ) ) = ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) |
| 17 | 14 16 | eqtri | ⊢ ( 2 · ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) |
| 18 | 12 17 | oveq12i | ⊢ ( ( 2 · ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) + ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 19 | 1 2 1 2 | normlem9 | ⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) |
| 20 | 10 15 | addcli | ⊢ ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ |
| 21 | 1 2 | hicli | ⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 22 | 2 1 | hicli | ⊢ ( 𝐵 ·ih 𝐴 ) ∈ ℂ |
| 23 | 21 22 | addcli | ⊢ ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ∈ ℂ |
| 24 | 20 23 | negsubi | ⊢ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) − ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) |
| 25 | 19 24 | eqtr4i | ⊢ ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) |
| 26 | 1 2 1 2 | normlem8 | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) |
| 27 | 25 26 | oveq12i | ⊢ ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) + ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) = ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) + ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) |
| 28 | 23 | negcli | ⊢ - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ∈ ℂ |
| 29 | 20 28 20 23 | add42i | ⊢ ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) + ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) = ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) |
| 30 | 23 | negidi | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) = 0 |
| 31 | 30 | oveq2i | ⊢ ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) = ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + 0 ) |
| 32 | 20 20 | addcli | ⊢ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) ∈ ℂ |
| 33 | 32 | addridi | ⊢ ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + 0 ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 34 | 10 15 10 15 | add4i | ⊢ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) + ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 35 | 31 33 34 | 3eqtri | ⊢ ( ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) + ( ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) + - ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) + ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 36 | 27 29 35 | 3eqtri | ⊢ ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) + ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐴 ) ) + ( ( 𝐵 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 37 | 18 36 | eqtr4i | ⊢ ( ( 2 · ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) = ( ( ( 𝐴 −ℎ 𝐵 ) ·ih ( 𝐴 −ℎ 𝐵 ) ) + ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) |
| 38 | 7 37 | eqtr4i | ⊢ ( ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↑ 2 ) + ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) ) = ( ( 2 · ( ( normℎ ‘ 𝐴 ) ↑ 2 ) ) + ( 2 · ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) |