This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector cancellation law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvnegdi.1 | ⊢ 𝐴 ∈ ℋ | |
| hvnegdi.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | hvsubcan2i | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 2 ·ℎ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | hvnegdi.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 1 2 | hvsubvali | ⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 4 | 3 | oveq2i | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 5 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 6 | 5 2 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
| 7 | 1 2 1 6 | hvadd4i | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( 𝐴 +ℎ 𝐴 ) +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 8 | hv2times | ⊢ ( 𝐴 ∈ ℋ → ( 2 ·ℎ 𝐴 ) = ( 𝐴 +ℎ 𝐴 ) ) | |
| 9 | 1 8 | ax-mp | ⊢ ( 2 ·ℎ 𝐴 ) = ( 𝐴 +ℎ 𝐴 ) |
| 10 | 9 | eqcomi | ⊢ ( 𝐴 +ℎ 𝐴 ) = ( 2 ·ℎ 𝐴 ) |
| 11 | 2 | hvnegidi | ⊢ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) = 0ℎ |
| 12 | 10 11 | oveq12i | ⊢ ( ( 𝐴 +ℎ 𝐴 ) +ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( 2 ·ℎ 𝐴 ) +ℎ 0ℎ ) |
| 13 | 7 12 | eqtri | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( ( 2 ·ℎ 𝐴 ) +ℎ 0ℎ ) |
| 14 | 2cn | ⊢ 2 ∈ ℂ | |
| 15 | 14 1 | hvmulcli | ⊢ ( 2 ·ℎ 𝐴 ) ∈ ℋ |
| 16 | ax-hvaddid | ⊢ ( ( 2 ·ℎ 𝐴 ) ∈ ℋ → ( ( 2 ·ℎ 𝐴 ) +ℎ 0ℎ ) = ( 2 ·ℎ 𝐴 ) ) | |
| 17 | 15 16 | ax-mp | ⊢ ( ( 2 ·ℎ 𝐴 ) +ℎ 0ℎ ) = ( 2 ·ℎ 𝐴 ) |
| 18 | 13 17 | eqtri | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 2 ·ℎ 𝐴 ) |
| 19 | 4 18 | eqtri | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 2 ·ℎ 𝐴 ) |