This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation-type law that "extracts" a vector A from its inner product with a proportional vector B . (Contributed by NM, 18-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normcan | |- ( ( B e. ~H /\ B =/= 0h /\ A e. ( span ` { B } ) ) -> ( ( ( A .ih B ) / ( ( normh ` B ) ^ 2 ) ) .h B ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elspansn | |- ( B e. ~H -> ( A e. ( span ` { B } ) <-> E. x e. CC A = ( x .h B ) ) ) |
|
| 2 | 1 | adantr | |- ( ( B e. ~H /\ B =/= 0h ) -> ( A e. ( span ` { B } ) <-> E. x e. CC A = ( x .h B ) ) ) |
| 3 | oveq1 | |- ( A = ( x .h B ) -> ( A .ih B ) = ( ( x .h B ) .ih B ) ) |
|
| 4 | simpr | |- ( ( B e. ~H /\ x e. CC ) -> x e. CC ) |
|
| 5 | simpl | |- ( ( B e. ~H /\ x e. CC ) -> B e. ~H ) |
|
| 6 | ax-his3 | |- ( ( x e. CC /\ B e. ~H /\ B e. ~H ) -> ( ( x .h B ) .ih B ) = ( x x. ( B .ih B ) ) ) |
|
| 7 | 4 5 5 6 | syl3anc | |- ( ( B e. ~H /\ x e. CC ) -> ( ( x .h B ) .ih B ) = ( x x. ( B .ih B ) ) ) |
| 8 | 3 7 | sylan9eqr | |- ( ( ( B e. ~H /\ x e. CC ) /\ A = ( x .h B ) ) -> ( A .ih B ) = ( x x. ( B .ih B ) ) ) |
| 9 | normsq | |- ( B e. ~H -> ( ( normh ` B ) ^ 2 ) = ( B .ih B ) ) |
|
| 10 | 9 | ad2antrr | |- ( ( ( B e. ~H /\ x e. CC ) /\ A = ( x .h B ) ) -> ( ( normh ` B ) ^ 2 ) = ( B .ih B ) ) |
| 11 | 8 10 | oveq12d | |- ( ( ( B e. ~H /\ x e. CC ) /\ A = ( x .h B ) ) -> ( ( A .ih B ) / ( ( normh ` B ) ^ 2 ) ) = ( ( x x. ( B .ih B ) ) / ( B .ih B ) ) ) |
| 12 | 11 | adantllr | |- ( ( ( ( B e. ~H /\ B =/= 0h ) /\ x e. CC ) /\ A = ( x .h B ) ) -> ( ( A .ih B ) / ( ( normh ` B ) ^ 2 ) ) = ( ( x x. ( B .ih B ) ) / ( B .ih B ) ) ) |
| 13 | simpr | |- ( ( ( B e. ~H /\ B =/= 0h ) /\ x e. CC ) -> x e. CC ) |
|
| 14 | hicl | |- ( ( B e. ~H /\ B e. ~H ) -> ( B .ih B ) e. CC ) |
|
| 15 | 14 | anidms | |- ( B e. ~H -> ( B .ih B ) e. CC ) |
| 16 | 15 | ad2antrr | |- ( ( ( B e. ~H /\ B =/= 0h ) /\ x e. CC ) -> ( B .ih B ) e. CC ) |
| 17 | his6 | |- ( B e. ~H -> ( ( B .ih B ) = 0 <-> B = 0h ) ) |
|
| 18 | 17 | necon3bid | |- ( B e. ~H -> ( ( B .ih B ) =/= 0 <-> B =/= 0h ) ) |
| 19 | 18 | biimpar | |- ( ( B e. ~H /\ B =/= 0h ) -> ( B .ih B ) =/= 0 ) |
| 20 | 19 | adantr | |- ( ( ( B e. ~H /\ B =/= 0h ) /\ x e. CC ) -> ( B .ih B ) =/= 0 ) |
| 21 | 13 16 20 | divcan4d | |- ( ( ( B e. ~H /\ B =/= 0h ) /\ x e. CC ) -> ( ( x x. ( B .ih B ) ) / ( B .ih B ) ) = x ) |
| 22 | 21 | adantr | |- ( ( ( ( B e. ~H /\ B =/= 0h ) /\ x e. CC ) /\ A = ( x .h B ) ) -> ( ( x x. ( B .ih B ) ) / ( B .ih B ) ) = x ) |
| 23 | 12 22 | eqtrd | |- ( ( ( ( B e. ~H /\ B =/= 0h ) /\ x e. CC ) /\ A = ( x .h B ) ) -> ( ( A .ih B ) / ( ( normh ` B ) ^ 2 ) ) = x ) |
| 24 | 23 | oveq1d | |- ( ( ( ( B e. ~H /\ B =/= 0h ) /\ x e. CC ) /\ A = ( x .h B ) ) -> ( ( ( A .ih B ) / ( ( normh ` B ) ^ 2 ) ) .h B ) = ( x .h B ) ) |
| 25 | simpr | |- ( ( ( ( B e. ~H /\ B =/= 0h ) /\ x e. CC ) /\ A = ( x .h B ) ) -> A = ( x .h B ) ) |
|
| 26 | 24 25 | eqtr4d | |- ( ( ( ( B e. ~H /\ B =/= 0h ) /\ x e. CC ) /\ A = ( x .h B ) ) -> ( ( ( A .ih B ) / ( ( normh ` B ) ^ 2 ) ) .h B ) = A ) |
| 27 | 26 | rexlimdva2 | |- ( ( B e. ~H /\ B =/= 0h ) -> ( E. x e. CC A = ( x .h B ) -> ( ( ( A .ih B ) / ( ( normh ` B ) ^ 2 ) ) .h B ) = A ) ) |
| 28 | 2 27 | sylbid | |- ( ( B e. ~H /\ B =/= 0h ) -> ( A e. ( span ` { B } ) -> ( ( ( A .ih B ) / ( ( normh ` B ) ^ 2 ) ) .h B ) = A ) ) |
| 29 | 28 | 3impia | |- ( ( B e. ~H /\ B =/= 0h /\ A e. ( span ` { B } ) ) -> ( ( ( A .ih B ) / ( ( normh ` B ) ^ 2 ) ) .h B ) = A ) |