This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the span of a singleton. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elspansn | ⊢ ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → { 𝐴 } = { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( span ‘ { 𝐴 } ) = ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) |
| 3 | 2 | eleq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ) ) |
| 4 | oveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝑥 ·ℎ 𝐴 ) = ( 𝑥 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 5 | 4 | eqeq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐵 = ( 𝑥 ·ℎ 𝐴 ) ↔ 𝐵 = ( 𝑥 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 6 | 5 | rexbidv | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ 𝐴 ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 7 | 3 6 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ 𝐴 ) ) ↔ ( 𝐵 ∈ ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) ) |
| 8 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 9 | 8 | elspansni | ⊢ ( 𝐵 ∈ ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) |
| 10 | 7 9 | dedth | ⊢ ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 ·ℎ 𝐴 ) ) ) |