This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of positive integers is unbounded above. Theorem I.28 of Apostol p. 26. (Contributed by NM, 21-Jan-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnunb | ⊢ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.24 | ⊢ ¬ ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ) | |
| 2 | peano2rem | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 − 1 ) ∈ ℝ ) | |
| 3 | ltm1 | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 − 1 ) < 𝑥 ) | |
| 4 | ovex | ⊢ ( 𝑥 − 1 ) ∈ V | |
| 5 | eleq1 | ⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( 𝑦 ∈ ℝ ↔ ( 𝑥 − 1 ) ∈ ℝ ) ) | |
| 6 | breq1 | ⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( 𝑦 < 𝑥 ↔ ( 𝑥 − 1 ) < 𝑥 ) ) | |
| 7 | breq1 | ⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( 𝑦 < 𝑧 ↔ ( 𝑥 − 1 ) < 𝑧 ) ) | |
| 8 | 7 | rexbidv | ⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) |
| 9 | 6 8 | imbi12d | ⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ↔ ( ( 𝑥 − 1 ) < 𝑥 → ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) ) |
| 10 | 5 9 | imbi12d | ⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) ↔ ( ( 𝑥 − 1 ) ∈ ℝ → ( ( 𝑥 − 1 ) < 𝑥 → ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) ) ) |
| 11 | 4 10 | spcv | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ( ( 𝑥 − 1 ) ∈ ℝ → ( ( 𝑥 − 1 ) < 𝑥 → ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) ) |
| 12 | 3 11 | syl7 | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ( ( 𝑥 − 1 ) ∈ ℝ → ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) ) |
| 13 | 2 12 | syl5 | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) ) |
| 14 | 13 | pm2.43d | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) |
| 15 | df-rex | ⊢ ( ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ ( 𝑥 − 1 ) < 𝑧 ) ) | |
| 16 | 14 15 | imbitrdi | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ( 𝑥 ∈ ℝ → ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ ( 𝑥 − 1 ) < 𝑧 ) ) ) |
| 17 | 16 | com12 | ⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ ( 𝑥 − 1 ) < 𝑧 ) ) ) |
| 18 | nnre | ⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) | |
| 19 | 1re | ⊢ 1 ∈ ℝ | |
| 20 | ltsubadd | ⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑥 − 1 ) < 𝑧 ↔ 𝑥 < ( 𝑧 + 1 ) ) ) | |
| 21 | 19 20 | mp3an2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑥 − 1 ) < 𝑧 ↔ 𝑥 < ( 𝑧 + 1 ) ) ) |
| 22 | 18 21 | sylan2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑥 − 1 ) < 𝑧 ↔ 𝑥 < ( 𝑧 + 1 ) ) ) |
| 23 | 22 | pm5.32da | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝑧 ∈ ℕ ∧ ( 𝑥 − 1 ) < 𝑧 ) ↔ ( 𝑧 ∈ ℕ ∧ 𝑥 < ( 𝑧 + 1 ) ) ) ) |
| 24 | 23 | exbidv | ⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ ( 𝑥 − 1 ) < 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ 𝑥 < ( 𝑧 + 1 ) ) ) ) |
| 25 | peano2nn | ⊢ ( 𝑧 ∈ ℕ → ( 𝑧 + 1 ) ∈ ℕ ) | |
| 26 | ovex | ⊢ ( 𝑧 + 1 ) ∈ V | |
| 27 | eleq1 | ⊢ ( 𝑦 = ( 𝑧 + 1 ) → ( 𝑦 ∈ ℕ ↔ ( 𝑧 + 1 ) ∈ ℕ ) ) | |
| 28 | breq2 | ⊢ ( 𝑦 = ( 𝑧 + 1 ) → ( 𝑥 < 𝑦 ↔ 𝑥 < ( 𝑧 + 1 ) ) ) | |
| 29 | 27 28 | anbi12d | ⊢ ( 𝑦 = ( 𝑧 + 1 ) → ( ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ↔ ( ( 𝑧 + 1 ) ∈ ℕ ∧ 𝑥 < ( 𝑧 + 1 ) ) ) ) |
| 30 | 26 29 | spcev | ⊢ ( ( ( 𝑧 + 1 ) ∈ ℕ ∧ 𝑥 < ( 𝑧 + 1 ) ) → ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) |
| 31 | 25 30 | sylan | ⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑥 < ( 𝑧 + 1 ) ) → ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) |
| 32 | 31 | exlimiv | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ 𝑥 < ( 𝑧 + 1 ) ) → ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) |
| 33 | 24 32 | biimtrdi | ⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ ( 𝑥 − 1 ) < 𝑧 ) → ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) ) |
| 34 | 17 33 | syld | ⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) ) |
| 35 | df-ral | ⊢ ( ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) ) | |
| 36 | df-ral | ⊢ ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ( 𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦 ) ) | |
| 37 | alinexa | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦 ) ↔ ¬ ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) | |
| 38 | 36 37 | bitr2i | ⊢ ( ¬ ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ↔ ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ) |
| 39 | 38 | con1bii | ⊢ ( ¬ ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) |
| 40 | 34 35 39 | 3imtr4g | ⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) → ¬ ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ) ) |
| 41 | 40 | anim2d | ⊢ ( 𝑥 ∈ ℝ → ( ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ) ) ) |
| 42 | 1 41 | mtoi | ⊢ ( 𝑥 ∈ ℝ → ¬ ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) ) |
| 43 | 42 | nrex | ⊢ ¬ ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) |
| 44 | nnssre | ⊢ ℕ ⊆ ℝ | |
| 45 | 1nn | ⊢ 1 ∈ ℕ | |
| 46 | 45 | ne0ii | ⊢ ℕ ≠ ∅ |
| 47 | sup2 | ⊢ ( ( ℕ ⊆ ℝ ∧ ℕ ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) ) | |
| 48 | 44 46 47 | mp3an12 | ⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) ) |
| 49 | 43 48 | mto | ⊢ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) |