This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty, bounded-above set of reals has a supremum. Stronger version of completeness axiom (it has a slightly weaker antecedent). (Contributed by NM, 19-Jan-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sup2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2re | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ( 𝑥 + 1 ) ∈ ℝ ) |
| 3 | 2 | a1i | ⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ( 𝑥 + 1 ) ∈ ℝ ) ) |
| 4 | ssel | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ ) ) | |
| 5 | ltp1 | ⊢ ( 𝑥 ∈ ℝ → 𝑥 < ( 𝑥 + 1 ) ) | |
| 6 | 1 | ancli | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ) ) |
| 7 | lttr | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ) → ( ( 𝑦 < 𝑥 ∧ 𝑥 < ( 𝑥 + 1 ) ) → 𝑦 < ( 𝑥 + 1 ) ) ) | |
| 8 | 7 | 3expb | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ) ) → ( ( 𝑦 < 𝑥 ∧ 𝑥 < ( 𝑥 + 1 ) ) → 𝑦 < ( 𝑥 + 1 ) ) ) |
| 9 | 6 8 | sylan2 | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑦 < 𝑥 ∧ 𝑥 < ( 𝑥 + 1 ) ) → 𝑦 < ( 𝑥 + 1 ) ) ) |
| 10 | 5 9 | sylan2i | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑦 < 𝑥 ∧ 𝑥 ∈ ℝ ) → 𝑦 < ( 𝑥 + 1 ) ) ) |
| 11 | 10 | exp4b | ⊢ ( 𝑦 ∈ ℝ → ( 𝑥 ∈ ℝ → ( 𝑦 < 𝑥 → ( 𝑥 ∈ ℝ → 𝑦 < ( 𝑥 + 1 ) ) ) ) ) |
| 12 | 11 | com34 | ⊢ ( 𝑦 ∈ ℝ → ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ℝ → ( 𝑦 < 𝑥 → 𝑦 < ( 𝑥 + 1 ) ) ) ) ) |
| 13 | 12 | pm2.43d | ⊢ ( 𝑦 ∈ ℝ → ( 𝑥 ∈ ℝ → ( 𝑦 < 𝑥 → 𝑦 < ( 𝑥 + 1 ) ) ) ) |
| 14 | 13 | imp | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 < 𝑥 → 𝑦 < ( 𝑥 + 1 ) ) ) |
| 15 | breq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 < ( 𝑥 + 1 ) ↔ 𝑥 < ( 𝑥 + 1 ) ) ) | |
| 16 | 5 15 | syl5ibrcom | ⊢ ( 𝑥 ∈ ℝ → ( 𝑦 = 𝑥 → 𝑦 < ( 𝑥 + 1 ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 = 𝑥 → 𝑦 < ( 𝑥 + 1 ) ) ) |
| 18 | 14 17 | jaod | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → 𝑦 < ( 𝑥 + 1 ) ) ) |
| 19 | 18 | ex | ⊢ ( 𝑦 ∈ ℝ → ( 𝑥 ∈ ℝ → ( ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → 𝑦 < ( 𝑥 + 1 ) ) ) ) |
| 20 | 4 19 | syl6 | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑦 ∈ 𝐴 → ( 𝑥 ∈ ℝ → ( ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → 𝑦 < ( 𝑥 + 1 ) ) ) ) ) |
| 21 | 20 | com23 | ⊢ ( 𝐴 ⊆ ℝ → ( 𝑥 ∈ ℝ → ( 𝑦 ∈ 𝐴 → ( ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → 𝑦 < ( 𝑥 + 1 ) ) ) ) ) |
| 22 | 21 | imp | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 ∈ 𝐴 → ( ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → 𝑦 < ( 𝑥 + 1 ) ) ) ) |
| 23 | 22 | a2d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝑦 ∈ 𝐴 → ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ( 𝑦 ∈ 𝐴 → 𝑦 < ( 𝑥 + 1 ) ) ) ) |
| 24 | 23 | ralimdv2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → ∀ 𝑦 ∈ 𝐴 𝑦 < ( 𝑥 + 1 ) ) ) |
| 25 | 24 | expimpd | ⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∀ 𝑦 ∈ 𝐴 𝑦 < ( 𝑥 + 1 ) ) ) |
| 26 | 3 25 | jcad | ⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ( ( 𝑥 + 1 ) ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < ( 𝑥 + 1 ) ) ) ) |
| 27 | ovex | ⊢ ( 𝑥 + 1 ) ∈ V | |
| 28 | eleq1 | ⊢ ( 𝑧 = ( 𝑥 + 1 ) → ( 𝑧 ∈ ℝ ↔ ( 𝑥 + 1 ) ∈ ℝ ) ) | |
| 29 | breq2 | ⊢ ( 𝑧 = ( 𝑥 + 1 ) → ( 𝑦 < 𝑧 ↔ 𝑦 < ( 𝑥 + 1 ) ) ) | |
| 30 | 29 | ralbidv | ⊢ ( 𝑧 = ( 𝑥 + 1 ) → ( ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 < ( 𝑥 + 1 ) ) ) |
| 31 | 28 30 | anbi12d | ⊢ ( 𝑧 = ( 𝑥 + 1 ) → ( ( 𝑧 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( ( 𝑥 + 1 ) ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < ( 𝑥 + 1 ) ) ) ) |
| 32 | 27 31 | spcev | ⊢ ( ( ( 𝑥 + 1 ) ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < ( 𝑥 + 1 ) ) → ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ) ) |
| 33 | 26 32 | syl6 | ⊢ ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 34 | 33 | exlimdv | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 35 | eleq1 | ⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ ℝ ↔ 𝑥 ∈ ℝ ) ) | |
| 36 | breq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑦 < 𝑧 ↔ 𝑦 < 𝑥 ) ) | |
| 37 | 36 | ralbidv | ⊢ ( 𝑧 = 𝑥 → ( ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ↔ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 38 | 35 37 | anbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) ) |
| 39 | 38 | cbvexvw | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑧 ) ↔ ∃ 𝑥 ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 40 | 34 39 | imbitrdi | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∃ 𝑥 ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) ) |
| 41 | df-rex | ⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) | |
| 42 | df-rex | ⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) | |
| 43 | 40 41 42 | 3imtr4g | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 45 | 44 | imdistani | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 46 | df-3an | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ↔ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) | |
| 47 | df-3an | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ↔ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ) ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) | |
| 48 | 45 46 47 | 3imtr4i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) ) |
| 49 | axsup | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 < 𝑥 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) | |
| 50 | 48 49 | syl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |