This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtri2 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsseleq | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) | |
| 2 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 3 | 2 | orbi2i | ⊢ ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵 ) ) |
| 4 | orcom | ⊢ ( ( 𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) | |
| 5 | 3 4 | bitri | ⊢ ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) |
| 6 | 1 5 | bitrdi | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 7 | ordtri1 | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) | |
| 8 | 6 7 | bitr3d | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
| 9 | 8 | ancoms | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
| 10 | 9 | con2bid | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |