This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmword | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 ·o 𝐴 ) ⊆ ( 𝐶 ·o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba | ⊢ ( ∅ ∈ 𝐶 → ( 𝐵 ∈ 𝐴 ↔ ( 𝐵 ∈ 𝐴 ∧ ∅ ∈ 𝐶 ) ) ) | |
| 2 | nnmord | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐵 ∈ 𝐴 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) | |
| 3 | 2 | 3com12 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐵 ∈ 𝐴 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) |
| 4 | 1 3 | sylan9bbr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐵 ∈ 𝐴 ↔ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) |
| 5 | 4 | notbid | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) |
| 6 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐴 ∈ ω ) | |
| 7 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐴 ∈ On ) |
| 9 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐵 ∈ ω ) | |
| 10 | nnon | ⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐵 ∈ On ) |
| 12 | ontri1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) | |
| 13 | 8 11 12 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
| 14 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐶 ∈ ω ) | |
| 15 | nnmcl | ⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐶 ·o 𝐴 ) ∈ ω ) | |
| 16 | 14 6 15 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ω ) |
| 17 | nnon | ⊢ ( ( 𝐶 ·o 𝐴 ) ∈ ω → ( 𝐶 ·o 𝐴 ) ∈ On ) | |
| 18 | 16 17 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ On ) |
| 19 | nnmcl | ⊢ ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐶 ·o 𝐵 ) ∈ ω ) | |
| 20 | 14 9 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐵 ) ∈ ω ) |
| 21 | nnon | ⊢ ( ( 𝐶 ·o 𝐵 ) ∈ ω → ( 𝐶 ·o 𝐵 ) ∈ On ) | |
| 22 | 20 21 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐵 ) ∈ On ) |
| 23 | ontri1 | ⊢ ( ( ( 𝐶 ·o 𝐴 ) ∈ On ∧ ( 𝐶 ·o 𝐵 ) ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ⊆ ( 𝐶 ·o 𝐵 ) ↔ ¬ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) | |
| 24 | 18 22 23 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐶 ·o 𝐴 ) ⊆ ( 𝐶 ·o 𝐵 ) ↔ ¬ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) |
| 25 | 5 13 24 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 ·o 𝐴 ) ⊆ ( 𝐶 ·o 𝐵 ) ) ) |