This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of multiplication. Half of Proposition 8.19 of TakeutiZaring p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmordi | ⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝐴 ∈ ω ) | |
| 2 | 1 | expcom | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ ω ) ) |
| 3 | eleq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 4 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o 𝐵 ) ) | |
| 5 | 4 | eleq2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| 6 | 3 5 | imbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 7 | 6 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ↔ ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
| 8 | eleq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ∅ ) ) | |
| 9 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o ∅ ) ) | |
| 10 | 9 | eleq2d | ⊢ ( 𝑥 = ∅ → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) |
| 11 | 8 10 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) ) |
| 12 | eleq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 13 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o 𝑦 ) ) | |
| 14 | 13 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) |
| 15 | 12 14 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) |
| 16 | eleq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝑦 ) ) | |
| 17 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o suc 𝑦 ) ) | |
| 18 | 17 | eleq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) |
| 19 | 16 18 | imbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) |
| 20 | noel | ⊢ ¬ 𝐴 ∈ ∅ | |
| 21 | 20 | pm2.21i | ⊢ ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) |
| 22 | 21 | a1i | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) |
| 23 | elsuci | ⊢ ( 𝐴 ∈ suc 𝑦 → ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) ) | |
| 24 | nnmcl | ⊢ ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐶 ·o 𝑦 ) ∈ ω ) | |
| 25 | simpl | ⊢ ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → 𝐶 ∈ ω ) | |
| 26 | 24 25 | jca | ⊢ ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ) |
| 27 | nnaword1 | ⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 ·o 𝑦 ) ⊆ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) | |
| 28 | 27 | sseld | ⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 29 | 28 | imim2d | ⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) ) |
| 30 | 29 | imp | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 31 | 30 | adantrl | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 32 | nna0 | ⊢ ( ( 𝐶 ·o 𝑦 ) ∈ ω → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) = ( 𝐶 ·o 𝑦 ) ) | |
| 33 | 32 | ad2antrr | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) = ( 𝐶 ·o 𝑦 ) ) |
| 34 | nnaordi | ⊢ ( ( 𝐶 ∈ ω ∧ ( 𝐶 ·o 𝑦 ) ∈ ω ) → ( ∅ ∈ 𝐶 → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) | |
| 35 | 34 | ancoms | ⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 36 | 35 | imp | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) |
| 37 | 33 36 | eqeltrrd | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) |
| 38 | oveq2 | ⊢ ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝑦 ) ) | |
| 39 | 38 | eleq1d | ⊢ ( 𝐴 = 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ↔ ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 40 | 37 39 | syl5ibrcom | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 41 | 40 | adantrr | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 42 | 31 41 | jaod | ⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 43 | 26 42 | sylan | ⊢ ( ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 44 | 23 43 | syl5 | ⊢ ( ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 45 | nnmsuc | ⊢ ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐶 ·o suc 𝑦 ) = ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) | |
| 46 | 45 | eleq2d | ⊢ ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
| 48 | 44 47 | sylibrd | ⊢ ( ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) |
| 49 | 48 | exp43 | ⊢ ( 𝐶 ∈ ω → ( 𝑦 ∈ ω → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
| 50 | 49 | com12 | ⊢ ( 𝑦 ∈ ω → ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
| 51 | 50 | adantld | ⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
| 52 | 51 | impd | ⊢ ( 𝑦 ∈ ω → ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) |
| 53 | 11 15 19 22 52 | finds2 | ⊢ ( 𝑥 ∈ ω → ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) |
| 54 | 7 53 | vtoclga | ⊢ ( 𝐵 ∈ ω → ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 55 | 54 | com23 | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 56 | 55 | exp4a | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
| 57 | 56 | exp4a | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ ω → ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) ) |
| 58 | 2 57 | mpdd | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
| 59 | 58 | com34 | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → ( ∅ ∈ 𝐶 → ( 𝐶 ∈ ω → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
| 60 | 59 | com24 | ⊢ ( 𝐵 ∈ ω → ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
| 61 | 60 | imp31 | ⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |