This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication with successor. Exercise 16 of Enderton p. 82. (Contributed by NM, 21-Sep-1995) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmsucr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ·o 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( suc 𝐴 ·o 𝑥 ) = ( suc 𝐴 ·o 𝐵 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝐵 ) ) | |
| 3 | id | ⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) | |
| 4 | 2 3 | oveq12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) |
| 5 | 1 4 | eqeq12d | ⊢ ( 𝑥 = 𝐵 → ( ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ↔ ( suc 𝐴 ·o 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ω → ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ) ↔ ( 𝐴 ∈ ω → ( suc 𝐴 ·o 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = ∅ → ( suc 𝐴 ·o 𝑥 ) = ( suc 𝐴 ·o ∅ ) ) | |
| 8 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) | |
| 9 | id | ⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) | |
| 10 | 8 9 | oveq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) = ( ( 𝐴 ·o ∅ ) +o ∅ ) ) |
| 11 | 7 10 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ↔ ( suc 𝐴 ·o ∅ ) = ( ( 𝐴 ·o ∅ ) +o ∅ ) ) ) |
| 12 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( suc 𝐴 ·o 𝑥 ) = ( suc 𝐴 ·o 𝑦 ) ) | |
| 13 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) | |
| 14 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 15 | 13 14 | oveq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) ) |
| 16 | 12 15 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ↔ ( suc 𝐴 ·o 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) ) ) |
| 17 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( suc 𝐴 ·o 𝑥 ) = ( suc 𝐴 ·o suc 𝑦 ) ) | |
| 18 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) | |
| 19 | id | ⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) | |
| 20 | 18 19 | oveq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ) |
| 21 | 17 20 | eqeq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ↔ ( suc 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ) ) |
| 22 | peano2 | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) | |
| 23 | nnm0 | ⊢ ( suc 𝐴 ∈ ω → ( suc 𝐴 ·o ∅ ) = ∅ ) | |
| 24 | 22 23 | syl | ⊢ ( 𝐴 ∈ ω → ( suc 𝐴 ·o ∅ ) = ∅ ) |
| 25 | nnm0 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) = ∅ ) | |
| 26 | 24 25 | eqtr4d | ⊢ ( 𝐴 ∈ ω → ( suc 𝐴 ·o ∅ ) = ( 𝐴 ·o ∅ ) ) |
| 27 | peano1 | ⊢ ∅ ∈ ω | |
| 28 | nnmcl | ⊢ ( ( 𝐴 ∈ ω ∧ ∅ ∈ ω ) → ( 𝐴 ·o ∅ ) ∈ ω ) | |
| 29 | 27 28 | mpan2 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) ∈ ω ) |
| 30 | nna0 | ⊢ ( ( 𝐴 ·o ∅ ) ∈ ω → ( ( 𝐴 ·o ∅ ) +o ∅ ) = ( 𝐴 ·o ∅ ) ) | |
| 31 | 29 30 | syl | ⊢ ( 𝐴 ∈ ω → ( ( 𝐴 ·o ∅ ) +o ∅ ) = ( 𝐴 ·o ∅ ) ) |
| 32 | 26 31 | eqtr4d | ⊢ ( 𝐴 ∈ ω → ( suc 𝐴 ·o ∅ ) = ( ( 𝐴 ·o ∅ ) +o ∅ ) ) |
| 33 | oveq1 | ⊢ ( ( suc 𝐴 ·o 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) → ( ( suc 𝐴 ·o 𝑦 ) +o suc 𝐴 ) = ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) ) | |
| 34 | peano2b | ⊢ ( 𝐴 ∈ ω ↔ suc 𝐴 ∈ ω ) | |
| 35 | nnmsuc | ⊢ ( ( suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝐴 ·o suc 𝑦 ) = ( ( suc 𝐴 ·o 𝑦 ) +o suc 𝐴 ) ) | |
| 36 | 34 35 | sylanb | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝐴 ·o suc 𝑦 ) = ( ( suc 𝐴 ·o 𝑦 ) +o suc 𝐴 ) ) |
| 37 | nnmcl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o 𝑦 ) ∈ ω ) | |
| 38 | peano2b | ⊢ ( 𝑦 ∈ ω ↔ suc 𝑦 ∈ ω ) | |
| 39 | nnaass | ⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝐴 ∈ ω ∧ suc 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) | |
| 40 | 38 39 | syl3an3b | ⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
| 41 | 37 40 | syl3an1 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
| 42 | 41 | 3expb | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
| 43 | 42 | anidms | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
| 44 | nnmsuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) | |
| 45 | 44 | oveq1d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) = ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) ) |
| 46 | nnaass | ⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) | |
| 47 | 34 46 | syl3an3b | ⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
| 48 | 37 47 | syl3an1 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
| 49 | 48 | 3expb | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
| 50 | 49 | an42s | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
| 51 | 50 | anidms | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
| 52 | nnacom | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o 𝑦 ) = ( 𝑦 +o 𝐴 ) ) | |
| 53 | suceq | ⊢ ( ( 𝐴 +o 𝑦 ) = ( 𝑦 +o 𝐴 ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝑦 +o 𝐴 ) ) | |
| 54 | 52 53 | syl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝑦 +o 𝐴 ) ) |
| 55 | nnasuc | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) | |
| 56 | nnasuc | ⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝑦 +o suc 𝐴 ) = suc ( 𝑦 +o 𝐴 ) ) | |
| 57 | 56 | ancoms | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝑦 +o suc 𝐴 ) = suc ( 𝑦 +o 𝐴 ) ) |
| 58 | 54 55 57 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o suc 𝑦 ) = ( 𝑦 +o suc 𝐴 ) ) |
| 59 | 58 | oveq2d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
| 60 | 51 59 | eqtr4d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
| 61 | 43 45 60 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) = ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) ) |
| 62 | 36 61 | eqeq12d | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( suc 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ↔ ( ( suc 𝐴 ·o 𝑦 ) +o suc 𝐴 ) = ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) ) ) |
| 63 | 33 62 | imbitrrid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( suc 𝐴 ·o 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) → ( suc 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ) ) |
| 64 | 63 | expcom | ⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( suc 𝐴 ·o 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) → ( suc 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ) ) ) |
| 65 | 11 16 21 32 64 | finds2 | ⊢ ( 𝑥 ∈ ω → ( 𝐴 ∈ ω → ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ) ) |
| 66 | 6 65 | vtoclga | ⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( suc 𝐴 ·o 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) ) |
| 67 | 66 | impcom | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ·o 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) |