This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express " A divides B " for positive integers. (Contributed by NM, 3-Feb-2004) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nndiv | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑥 ∈ ℕ ( 𝐴 · 𝑥 ) = 𝐵 ↔ ( 𝐵 / 𝐴 ) ∈ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset | ⊢ ( ( 𝐵 / 𝐴 ) ∈ ℕ ↔ ∃ 𝑥 ∈ ℕ 𝑥 = ( 𝐵 / 𝐴 ) ) | |
| 2 | eqcom | ⊢ ( 𝑥 = ( 𝐵 / 𝐴 ) ↔ ( 𝐵 / 𝐴 ) = 𝑥 ) | |
| 3 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 4 | 3 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 5 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 7 | nncn | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℂ ) | |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℂ ) |
| 9 | nnne0 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) | |
| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → 𝐴 ≠ 0 ) |
| 11 | 4 6 8 10 | divmuld | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝐵 / 𝐴 ) = 𝑥 ↔ ( 𝐴 · 𝑥 ) = 𝐵 ) ) |
| 12 | 2 11 | bitrid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 = ( 𝐵 / 𝐴 ) ↔ ( 𝐴 · 𝑥 ) = 𝐵 ) ) |
| 13 | 12 | rexbidva | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑥 ∈ ℕ 𝑥 = ( 𝐵 / 𝐴 ) ↔ ∃ 𝑥 ∈ ℕ ( 𝐴 · 𝑥 ) = 𝐵 ) ) |
| 14 | 1 13 | bitr2id | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑥 ∈ ℕ ( 𝐴 · 𝑥 ) = 𝐵 ↔ ( 𝐵 / 𝐴 ) ∈ ℕ ) ) |