This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ledivnn | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | ⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) | |
| 2 | nnge1 | ⊢ ( 𝐵 ∈ ℕ → 1 ≤ 𝐵 ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 1 ≤ 𝐵 ) |
| 4 | nnrp | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ+ ) | |
| 5 | nnledivrp | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( 1 ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 1 ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
| 7 | 3 6 | mpbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) |
| 8 | 7 | ex | ⊢ ( 𝐴 ∈ ℕ → ( 𝐵 ∈ ℕ → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
| 9 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 10 | nnne0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) | |
| 11 | 9 10 | jca | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 ∈ ℕ ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 13 | div0 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 / 𝐵 ) = 0 ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 ∈ ℕ ) → ( 0 / 𝐵 ) = 0 ) |
| 15 | 0le0 | ⊢ 0 ≤ 0 | |
| 16 | 14 15 | eqbrtrdi | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 ∈ ℕ ) → ( 0 / 𝐵 ) ≤ 0 ) |
| 17 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 / 𝐵 ) = ( 0 / 𝐵 ) ) | |
| 18 | id | ⊢ ( 𝐴 = 0 → 𝐴 = 0 ) | |
| 19 | 17 18 | breq12d | ⊢ ( 𝐴 = 0 → ( ( 𝐴 / 𝐵 ) ≤ 𝐴 ↔ ( 0 / 𝐵 ) ≤ 0 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) ≤ 𝐴 ↔ ( 0 / 𝐵 ) ≤ 0 ) ) |
| 21 | 16 20 | mpbird | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) |
| 22 | 21 | ex | ⊢ ( 𝐴 = 0 → ( 𝐵 ∈ ℕ → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
| 23 | 8 22 | jaoi | ⊢ ( ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) → ( 𝐵 ∈ ℕ → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
| 24 | 1 23 | sylbi | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐵 ∈ ℕ → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ≤ 𝐴 ) |