This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ledivnn | |- ( ( A e. NN0 /\ B e. NN ) -> ( A / B ) <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
|
| 2 | nnge1 | |- ( B e. NN -> 1 <_ B ) |
|
| 3 | 2 | adantl | |- ( ( A e. NN /\ B e. NN ) -> 1 <_ B ) |
| 4 | nnrp | |- ( B e. NN -> B e. RR+ ) |
|
| 5 | nnledivrp | |- ( ( A e. NN /\ B e. RR+ ) -> ( 1 <_ B <-> ( A / B ) <_ A ) ) |
|
| 6 | 4 5 | sylan2 | |- ( ( A e. NN /\ B e. NN ) -> ( 1 <_ B <-> ( A / B ) <_ A ) ) |
| 7 | 3 6 | mpbid | |- ( ( A e. NN /\ B e. NN ) -> ( A / B ) <_ A ) |
| 8 | 7 | ex | |- ( A e. NN -> ( B e. NN -> ( A / B ) <_ A ) ) |
| 9 | nncn | |- ( B e. NN -> B e. CC ) |
|
| 10 | nnne0 | |- ( B e. NN -> B =/= 0 ) |
|
| 11 | 9 10 | jca | |- ( B e. NN -> ( B e. CC /\ B =/= 0 ) ) |
| 12 | 11 | adantl | |- ( ( A = 0 /\ B e. NN ) -> ( B e. CC /\ B =/= 0 ) ) |
| 13 | div0 | |- ( ( B e. CC /\ B =/= 0 ) -> ( 0 / B ) = 0 ) |
|
| 14 | 12 13 | syl | |- ( ( A = 0 /\ B e. NN ) -> ( 0 / B ) = 0 ) |
| 15 | 0le0 | |- 0 <_ 0 |
|
| 16 | 14 15 | eqbrtrdi | |- ( ( A = 0 /\ B e. NN ) -> ( 0 / B ) <_ 0 ) |
| 17 | oveq1 | |- ( A = 0 -> ( A / B ) = ( 0 / B ) ) |
|
| 18 | id | |- ( A = 0 -> A = 0 ) |
|
| 19 | 17 18 | breq12d | |- ( A = 0 -> ( ( A / B ) <_ A <-> ( 0 / B ) <_ 0 ) ) |
| 20 | 19 | adantr | |- ( ( A = 0 /\ B e. NN ) -> ( ( A / B ) <_ A <-> ( 0 / B ) <_ 0 ) ) |
| 21 | 16 20 | mpbird | |- ( ( A = 0 /\ B e. NN ) -> ( A / B ) <_ A ) |
| 22 | 21 | ex | |- ( A = 0 -> ( B e. NN -> ( A / B ) <_ A ) ) |
| 23 | 8 22 | jaoi | |- ( ( A e. NN \/ A = 0 ) -> ( B e. NN -> ( A / B ) <_ A ) ) |
| 24 | 1 23 | sylbi | |- ( A e. NN0 -> ( B e. NN -> ( A / B ) <_ A ) ) |
| 25 | 24 | imp | |- ( ( A e. NN0 /\ B e. NN ) -> ( A / B ) <_ A ) |