This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of a positive integer by a positive number is less than or equal to the integer iff the number is greater than or equal to 1. (Contributed by AV, 19-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnledivrp | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( 1 ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re | ⊢ 1 ∈ ℝ | |
| 2 | 0lt1 | ⊢ 0 < 1 | |
| 3 | 1 2 | pm3.2i | ⊢ ( 1 ∈ ℝ ∧ 0 < 1 ) |
| 4 | rpregt0 | ⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
| 6 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 7 | nngt0 | ⊢ ( 𝐴 ∈ ℕ → 0 < 𝐴 ) | |
| 8 | 6 7 | jca | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 10 | lediv2 | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ ( 𝐴 / 1 ) ) ) | |
| 11 | 3 5 9 10 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( 1 ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ ( 𝐴 / 1 ) ) ) |
| 12 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 13 | 12 | div1d | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 / 1 ) = 𝐴 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 1 ) = 𝐴 ) |
| 15 | 14 | breq2d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ≤ ( 𝐴 / 1 ) ↔ ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
| 16 | 11 15 | bitrd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( 1 ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |