This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0gsumfz.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| nn0gsumfz.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| nn0gsumfz.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| nn0gsumfz.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) | ||
| nn0gsumfz.y | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | nn0gsumfz | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0gsumfz.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | nn0gsumfz.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | nn0gsumfz.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | nn0gsumfz.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) | |
| 5 | nn0gsumfz.y | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 6 | 2 | fvexi | ⊢ 0 ∈ V |
| 7 | 4 6 | jctir | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ∧ 0 ∈ V ) ) |
| 8 | fsuppmapnn0ub | ⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ∧ 0 ∈ V ) → ( 𝐹 finSupp 0 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) | |
| 9 | 7 5 8 | sylc | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
| 10 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ( 𝐹 ↾ ( 0 ... 𝑠 ) ) = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) | |
| 11 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) | |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → 𝐺 ∈ CMnd ) |
| 13 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) |
| 14 | simpr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → 𝑠 ∈ ℕ0 ) | |
| 15 | eqid | ⊢ ( 𝐹 ↾ ( 0 ... 𝑠 ) ) = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) | |
| 16 | 1 2 12 13 14 15 | fsfnn0gsumfsffz | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) ) |
| 17 | 16 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) |
| 18 | 13 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) |
| 19 | fz0ssnn0 | ⊢ ( 0 ... 𝑠 ) ⊆ ℕ0 | |
| 20 | elmapssres | ⊢ ( ( 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ∧ ( 0 ... 𝑠 ) ⊆ ℕ0 ) → ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) | |
| 21 | 18 19 20 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) |
| 22 | eqeq1 | ⊢ ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) → ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ↔ ( 𝐹 ↾ ( 0 ... 𝑠 ) ) = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) | |
| 23 | oveq2 | ⊢ ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) → ( 𝐺 Σg 𝑓 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) | |
| 24 | 23 | eqeq2d | ⊢ ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) → ( ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ↔ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) ) |
| 25 | 22 24 | 3anbi13d | ⊢ ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) → ( ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ↔ ( ( 𝐹 ↾ ( 0 ... 𝑠 ) ) = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) ) ) |
| 26 | 25 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) ∧ 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) → ( ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ↔ ( ( 𝐹 ↾ ( 0 ... 𝑠 ) ) = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) ) ) |
| 27 | 21 26 | rspcedv | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ( ( ( 𝐹 ↾ ( 0 ... 𝑠 ) ) = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ) ) → ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 28 | 10 11 17 27 | mp3and | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) → ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) |
| 29 | 28 | ex | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) → ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 30 | 29 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) → ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) ) |
| 31 | 9 30 | mpd | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) |