This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0gsumfz.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| nn0gsumfz.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| nn0gsumfz.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| nn0gsumfz.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) | ||
| nn0gsumfz.y | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | nn0gsumfz0 | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0gsumfz.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | nn0gsumfz.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | nn0gsumfz.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | nn0gsumfz.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) | |
| 5 | nn0gsumfz.y | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 6 | 1 2 3 4 5 | nn0gsumfz | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) ) |
| 7 | simp3 | ⊢ ( ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) | |
| 8 | 7 | reximi | ⊢ ( ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) → ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) |
| 9 | 8 | reximi | ⊢ ( ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑓 = ( 𝐹 ↾ ( 0 ... 𝑠 ) ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ∧ ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) → ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) |
| 10 | 6 9 | syl | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∃ 𝑓 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg 𝑓 ) ) |