This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0gsumfz.b | |- B = ( Base ` G ) |
|
| nn0gsumfz.0 | |- .0. = ( 0g ` G ) |
||
| nn0gsumfz.g | |- ( ph -> G e. CMnd ) |
||
| nn0gsumfz.f | |- ( ph -> F e. ( B ^m NN0 ) ) |
||
| nn0gsumfz.y | |- ( ph -> F finSupp .0. ) |
||
| Assertion | nn0gsumfz | |- ( ph -> E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0gsumfz.b | |- B = ( Base ` G ) |
|
| 2 | nn0gsumfz.0 | |- .0. = ( 0g ` G ) |
|
| 3 | nn0gsumfz.g | |- ( ph -> G e. CMnd ) |
|
| 4 | nn0gsumfz.f | |- ( ph -> F e. ( B ^m NN0 ) ) |
|
| 5 | nn0gsumfz.y | |- ( ph -> F finSupp .0. ) |
|
| 6 | 2 | fvexi | |- .0. e. _V |
| 7 | 4 6 | jctir | |- ( ph -> ( F e. ( B ^m NN0 ) /\ .0. e. _V ) ) |
| 8 | fsuppmapnn0ub | |- ( ( F e. ( B ^m NN0 ) /\ .0. e. _V ) -> ( F finSupp .0. -> E. s e. NN0 A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) ) |
|
| 9 | 7 5 8 | sylc | |- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) |
| 10 | eqidd | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> ( F |` ( 0 ... s ) ) = ( F |` ( 0 ... s ) ) ) |
|
| 11 | simpr | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) |
|
| 12 | 3 | adantr | |- ( ( ph /\ s e. NN0 ) -> G e. CMnd ) |
| 13 | 4 | adantr | |- ( ( ph /\ s e. NN0 ) -> F e. ( B ^m NN0 ) ) |
| 14 | simpr | |- ( ( ph /\ s e. NN0 ) -> s e. NN0 ) |
|
| 15 | eqid | |- ( F |` ( 0 ... s ) ) = ( F |` ( 0 ... s ) ) |
|
| 16 | 1 2 12 13 14 15 | fsfnn0gsumfsffz | |- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) -> ( G gsum F ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) ) |
| 17 | 16 | imp | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> ( G gsum F ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) |
| 18 | 13 | adantr | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> F e. ( B ^m NN0 ) ) |
| 19 | fz0ssnn0 | |- ( 0 ... s ) C_ NN0 |
|
| 20 | elmapssres | |- ( ( F e. ( B ^m NN0 ) /\ ( 0 ... s ) C_ NN0 ) -> ( F |` ( 0 ... s ) ) e. ( B ^m ( 0 ... s ) ) ) |
|
| 21 | 18 19 20 | sylancl | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> ( F |` ( 0 ... s ) ) e. ( B ^m ( 0 ... s ) ) ) |
| 22 | eqeq1 | |- ( f = ( F |` ( 0 ... s ) ) -> ( f = ( F |` ( 0 ... s ) ) <-> ( F |` ( 0 ... s ) ) = ( F |` ( 0 ... s ) ) ) ) |
|
| 23 | oveq2 | |- ( f = ( F |` ( 0 ... s ) ) -> ( G gsum f ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) |
|
| 24 | 23 | eqeq2d | |- ( f = ( F |` ( 0 ... s ) ) -> ( ( G gsum F ) = ( G gsum f ) <-> ( G gsum F ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) ) |
| 25 | 22 24 | 3anbi13d | |- ( f = ( F |` ( 0 ... s ) ) -> ( ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) <-> ( ( F |` ( 0 ... s ) ) = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) ) ) |
| 26 | 25 | adantl | |- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) /\ f = ( F |` ( 0 ... s ) ) ) -> ( ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) <-> ( ( F |` ( 0 ... s ) ) = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) ) ) |
| 27 | 21 26 | rspcedv | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> ( ( ( F |` ( 0 ... s ) ) = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum ( F |` ( 0 ... s ) ) ) ) -> E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) ) ) |
| 28 | 10 11 17 27 | mp3and | |- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) ) -> E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) ) |
| 29 | 28 | ex | |- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) -> E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) ) ) |
| 30 | 29 | reximdva | |- ( ph -> ( E. s e. NN0 A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) -> E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) ) ) |
| 31 | 9 30 | mpd | |- ( ph -> E. s e. NN0 E. f e. ( B ^m ( 0 ... s ) ) ( f = ( F |` ( 0 ... s ) ) /\ A. x e. NN0 ( s < x -> ( F ` x ) = .0. ) /\ ( G gsum F ) = ( G gsum f ) ) ) |